Your Reliable Brake

Advantages for Your Applications

- Easy installation
- Brake outer diameter completely enclosed (higher protection can easily be realised)
- Magnetic coil is designed for a relative duty cycle of 100 %
- Magnetic coil and casting compound correspond to class of insulation F
- The nominal air gap is specified by design and inspected
- Short switching times
- Maintenance-free over the entire service lifetime of the rotor

Function

ROBA-stop®-M brakes are spring applied, electromagnetic safety brakes.

Spring applied function:
In de-energised condition, helical springs (6) press against the armature disk (5). The rotor (3) is held between the armature disk (5) and the corresponding mounting surface of the machine.

The shaft is braked via the toothed hub (1).

Electromagnetic:
When the power is switched on, a magnetic field is built up. The armature disk (5) is attracted to the coil carrier (2) against the spring pressure. The brake is released and the shaft is able to rotate freely.

Safety brakes:
The brake brakes reliably and safely in the event of a power switch-off, a power failure or an EMERGENCY STOP.

Certain ROBA-stop®-M brakes can be used for safety-relevant applications acc. ISO 13849-1 (for Permitted Types, see page 29).
For information on the safety parameters, please contact mayr® power transmission.
ROBA-stop®-M

Sizes 2 to 1000

Braking torques
- 0.7 to 1400 Nm (Standard design)
- 4 to 1800 Nm (Holding brake)

Permitted shaft diameter
- Ø 8 to 90

Order Number

<table>
<thead>
<tr>
<th>Nominal torque holding brake</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Nominal torque standard</td>
<td>1</td>
</tr>
<tr>
<td>Other braking torque adjustments, see Table 3, page 7</td>
<td>2, 3, 4, 5, 7</td>
</tr>
<tr>
<td>Nominal torque adjustable</td>
<td>6</td>
</tr>
</tbody>
</table>

0 Without accessories
1 Hand release 1)
2 Friction disk 7)
3 Hand release/Friction disk 1) 7)
4 Flange plate 8)
5 Hand release/Flange plate 1) 8)

Example: 16 / 891.211.0 / 24 / 16 / 6885/1

For Further Options, see page 11

ROBA-stop®-M safety brakes are also available in ATEX design according to the directive 2014/34/EU. (Please contact mayr® power transmission).

On request ROBA-stop® safety brakes can also be delivered with UL approval.
Technical Data

<table>
<thead>
<tr>
<th>Size</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braking torque Standards brake Type 891.0...</td>
<td>M_N</td>
<td>[Nm]</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>60</td>
<td>100</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>Holding brake Type 891.1...</td>
<td>M_N</td>
<td>[Nm]</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>100</td>
<td>180</td>
<td>280</td>
<td>460</td>
</tr>
<tr>
<td>Electrical power Standards brake</td>
<td>P_N</td>
<td>[W]</td>
<td>19</td>
<td>25</td>
<td>29</td>
<td>38</td>
<td>46</td>
<td>69</td>
<td>88</td>
<td>98</td>
<td>120</td>
</tr>
<tr>
<td>Holding brake</td>
<td></td>
</tr>
<tr>
<td>Maximum speed Standards brake</td>
<td>n_max</td>
<td>[rpm]</td>
<td>6000</td>
<td>5000</td>
<td>4000</td>
<td>3500</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>4200</td>
<td>3600</td>
</tr>
<tr>
<td>Holding brake</td>
<td></td>
</tr>
<tr>
<td>Idle speed Standards brake</td>
<td></td>
<td>[rpm]</td>
<td>9000</td>
<td>8800</td>
<td>7000</td>
<td>5600</td>
<td>4700</td>
<td>7200</td>
<td>6200</td>
<td>5400</td>
<td>4700</td>
</tr>
<tr>
<td>Holding brake</td>
<td></td>
</tr>
<tr>
<td>Reference speed</td>
<td>n_ref</td>
<td>[rpm]</td>
<td>6000</td>
<td>5000</td>
<td>4000</td>
<td>3000</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>2500</td>
<td>750</td>
</tr>
<tr>
<td>Weight</td>
<td>m</td>
<td>[kg]</td>
<td>0.76</td>
<td>1.1</td>
<td>1.8</td>
<td>3.4</td>
<td>4.5</td>
<td>7.4</td>
<td>13.6</td>
<td>19.2</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Bores

<table>
<thead>
<tr>
<th>Size</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard brake Type 891.0...</td>
<td>min.</td>
<td>[mm]</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>max.</td>
<td>[mm]</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Holding brake Type 891.1...</td>
<td>min.</td>
<td>[mm]</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>max.</td>
<td>[mm]</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>75</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.15</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
<td>0.35</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>30</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>52</td>
<td>60</td>
<td>78</td>
<td>84</td>
<td>96</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>c</td>
<td>24</td>
<td>26.5</td>
<td>28.7</td>
<td>35.5</td>
<td>39.2</td>
<td>50.5</td>
<td>54</td>
<td>59</td>
<td>69</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>c_2</td>
<td>25</td>
<td>27.5</td>
<td>29.7</td>
<td>36.8</td>
<td>40.5</td>
<td>51.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_3</td>
<td>29</td>
<td>32.5</td>
<td>34.7</td>
<td>42.5</td>
<td>47.2</td>
<td>58.5</td>
<td>64</td>
<td>71</td>
<td>83</td>
<td>89</td>
<td>106</td>
</tr>
<tr>
<td>D</td>
<td>76</td>
<td>87</td>
<td>103</td>
<td>128</td>
<td>148</td>
<td>168</td>
<td>200</td>
<td>221</td>
<td>258</td>
<td>310</td>
<td>382</td>
</tr>
<tr>
<td>D_1</td>
<td>81</td>
<td>92</td>
<td>108</td>
<td>130</td>
<td>148</td>
<td>168</td>
<td>200</td>
<td>221</td>
<td>258</td>
<td>310</td>
<td>382</td>
</tr>
<tr>
<td>D_2</td>
<td>81</td>
<td>92</td>
<td>108</td>
<td>134</td>
<td>154</td>
<td>174</td>
<td>206</td>
<td>227</td>
<td>266</td>
<td>318</td>
<td>392</td>
</tr>
<tr>
<td>F</td>
<td>48.5</td>
<td>54</td>
<td>63.5</td>
<td>77</td>
<td>88</td>
<td>100.5</td>
<td>123</td>
<td>133</td>
<td>153</td>
<td>179</td>
<td>-</td>
</tr>
<tr>
<td>F_1</td>
<td>102.5</td>
<td>108</td>
<td>117.5</td>
<td>131</td>
<td>169</td>
<td>228.5</td>
<td>267</td>
<td>347</td>
<td>494</td>
<td>521</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>19</td>
<td>23</td>
<td>23</td>
<td>-</td>
</tr>
</tbody>
</table>

Your reliable partner

ROBA-stop®-M electromagnetic safety brakes
ROBA-stop®-M electromagnetic safety brakes

Type 891...2.0
Standard with friction disk

Type 891...4.1
Enclosed design (IP66) with flange plate

Type 891...4.2
Tacho attachment design with flange plate

Dimensions [mm]

<table>
<thead>
<tr>
<th>Size</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>16.5</td>
<td>18</td>
<td>22</td>
<td>33</td>
<td>36</td>
<td>38</td>
<td>48</td>
<td>55</td>
<td>65</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>G₂</td>
<td>23.5</td>
<td>28.5</td>
<td>32.5</td>
<td>40.5</td>
<td>52.5</td>
<td>60</td>
<td>75.5</td>
<td>82.5</td>
<td>92</td>
<td>131</td>
<td>100</td>
</tr>
<tr>
<td>G₂₉</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>22</td>
<td>28</td>
<td>32</td>
<td>42</td>
<td>48</td>
<td>52</td>
<td>62</td>
<td>100</td>
</tr>
<tr>
<td>g</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>14.5</td>
<td>17.5</td>
<td>26</td>
<td>27</td>
<td>26</td>
<td>34</td>
<td>41</td>
<td>46</td>
<td>54.5</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>h₁</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>19</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>K₁</td>
<td>10</td>
<td>10.8</td>
<td>12.5</td>
<td>12.3</td>
<td>8.3</td>
<td>12</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>18.5</td>
</tr>
<tr>
<td>K₁₁</td>
<td>9.8</td>
<td>11.5</td>
<td>11.5</td>
<td>7.1</td>
<td>10.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K₂</td>
<td>10</td>
<td>8.8</td>
<td>11.5</td>
<td>10.3</td>
<td>10.3</td>
<td>14</td>
<td>12</td>
<td>18</td>
<td>25.5</td>
<td>21.5</td>
<td>17.5</td>
</tr>
<tr>
<td>K₂₁</td>
<td>10</td>
<td>9.8</td>
<td>11.5</td>
<td>10.3</td>
<td>10.3</td>
<td>14</td>
<td>12</td>
<td>18</td>
<td>26</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>L₁</td>
<td>39</td>
<td>41.5</td>
<td>45.2</td>
<td>55.7</td>
<td>61.7</td>
<td>72.5</td>
<td>84</td>
<td>97</td>
<td>116</td>
<td>114</td>
<td>135</td>
</tr>
<tr>
<td>L₂</td>
<td>38</td>
<td>40.5</td>
<td>44.2</td>
<td>54.7</td>
<td>60.7</td>
<td>71.5</td>
<td>83</td>
<td>96</td>
<td>115</td>
<td>113</td>
<td>135</td>
</tr>
<tr>
<td>L₃</td>
<td>40</td>
<td>42.5</td>
<td>46.2</td>
<td>57</td>
<td>63</td>
<td>73.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L₄</td>
<td>44</td>
<td>47.5</td>
<td>51.2</td>
<td>62.7</td>
<td>69.7</td>
<td>80.5</td>
<td>94</td>
<td>109</td>
<td>130</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L₅</td>
<td>43</td>
<td>46.5</td>
<td>50.2</td>
<td>61.7</td>
<td>68.7</td>
<td>79.5</td>
<td>93</td>
<td>108</td>
<td>129</td>
<td>132</td>
<td>156</td>
</tr>
<tr>
<td>l</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>

Supporting length of the key

M	66	72	90	112	132	145	170	196	230	278	325
M₁	35	41	52	61	75	88	100	112	145	115.5	-
R	57	65	81	101	121	130.5	154	178	206	253	300
R (CCV)	-	-	-	101	121	129.5	154	178	-	-	-

r (CCV)

s	3 x M₄	3 x M₄	3 x M₅	3 x M₆	3 x M₆	3 x M₈	3 x M₈	3 x M₈	3 x M₁₀^a	6 x M₁₀	6 x M₁₂^b
s₁	3 x M₃	3 x M₄	3 x M₄	3 x M₅	3 x M₅	3 x M₅	3 x M₅	3 x M₆	3 x M₆	3 x M₆	6 x M₆
t	6	10	10	10	10	10	10	10	10	13	12
x	0	0	0	0.5	0	0.5	0	0	0.2	0	0.3
Z	36	45	55	65	75	90	100	115	130	175	-
z	1	1	1	1	1	1	1	1	1	1	-

*Outer diameter friction disk: Free size; outer diameter flange plate: -0.2 |

Note: Missing dimensions are identical with Type 891.011.0 see page 4.

1) Other adjustments, see Table 3, page 7 and type key page 3.
1.1) Braking torque tolerance = +40%/-20% (friction lining pairing conditioning necessary, see Operational Instructions B.8.1...).
1.2) Minimum bore not permitted for Type 891..8... ...
2) The respective maximum bores are to be seen in relation to the corresponding keyways and their tolerances acc. Table 2 page 7.
3) Hub facing side (both sides) 3 mm deep, Ø 97 recessed.
4) Brake operation only possible with overexcitation

Standard voltages: 24; 104; 180; 207 V.
Permitted voltage tolerance acc. DIN IEC 60038 (±10%).

We reserve the right to make dimensional and constructional alterations.

*5) The IP66 design is equipped with a sealing cover on size 1000: L = 149 mm, L₄ = 170 mm.
6) Projection screw plugs (emergency hand release): 8.5 mm
7) For flange plate securement: additional 2 x M12 screws
8) For flange plate securement: additional 3 x M8/M10 screws
9) Type 891.2... only up to Size 32
ROBA-stop®-M – Short Description Installation

Installation Conditions
- The eccentricity of the shaft end in relation to the mounting pitch circle must not exceed 0.2 mm.
- The positional tolerance of the threaded holes for the cap screws (item 8, Fig. 2) must not exceed 0.2 mm.
- The axial run-out deviation of the screw-on surface to the shaft must not exceed the permitted axial run-out tolerance acc. DIN 42955 N. Larger deviations can lead to a drop in torque, to continuous grinding of the rotor and to overheating.

Installation
1. Mount the hub (1) onto the shaft and secure it axially (e.g. using a locking ring).
 - Recommended tolerance of hub-shaft connection H7/k6.
 - Avoid too tight hub-shaft connections (particularly on max. bores).
 - Keep the friction surfaces free of oil and grease.
 Attention! Please observe supporting length of the key acc. Dimensions on page 5.

2. If necessary (dependent on Type), move the friction disk or the flange plate over the shaft and attach it to the machine wall (or screw on for size 1000).
 - If there are no suitable counter-friction surfaces made of grey cast or steel available, please use brake Types 891_. _/3_. (with friction disk (9)) or 891_. _/4/-5_. (with flange plate).
 - When using a brake with a friction disk (Type 891_. _/2/-3_..), please observe the stamp “friction side” on the friction disk.

3. Push the rotor (3) onto the hub (1) by hand.

4. If necessary, install the hand release (only on sizes 2 - 500/the emergency hand release is pre-assembled on sizes 1000).

5. If necessary (dependent on Type, Type 891_. _/1_..), insert the O-ring into the axial recess of the coil carrier (2).

6. Push the rest of the brake over the hub (1) and the rotor collar (3).

7. Attach the brake onto the motor bearing shield or onto the machine wall evenly all around using the cap screws (8) - please observe the seal dependent on the type - with a torque wrench and tightening torque (acc. Table 1, page 7).

 Attention!
 Only use mayr® original screws (Table 1, page 7).

Braking Torque Adjustment
Different torque adjustments can be made using different spring configurations (6) in the coil carrier (2) (see Table 3, page 7).

Hand Release Installation (Sizes 2 – 500)
On Type 891.. _/1 installation of the hand release is only possible if a request for a hand release is stated on the brake order form (completely enclosed coil carrier (2)).
For hand release installation, the brake must be dismantled and de-energised.

Installation Procedure (Figs. 1 and 2):
1. Unscrew brake from the motor bearing shield or from the machine wall.
2. Remove the sealing plugs from the hand release bores in the coil carrier (2).
3. Put the O-rings (only with sealed hand release, Type 891_. _/1_) over the threaded bolts (11) and insert them into the recesses of the coil carrier (2).
4. Push the threaded bolts (11) with thrust springs (10) from the inside (you should be facing the magnetic coil (7) into the hand release bores in the coil carrier (2).
5. Push the O-rings (only with sealed hand release, Type 891_. _/1_) over the threaded bolts (11) and insert them into the recesses of the coil carrier (2).
6. Push intermediate plates (only with sealed hand release, Type 891_. _/1_) over the threaded bolts (11).
7. Mount the switch bracket (12), add the washers (13) and lightly screw on the self-locking hexagon nuts (14).
8. Tighten both hexagon nuts (14) until the armature disk (5) lies evenly against the coil carrier (2).
9. Loosen both hexagon nuts (14) by “Y” turns (see Table 1, page 7), thereby creating an air gap between the armature disk (5) and the coil carrier (2) or the inspection dimension “x” (see Page 7, Table 1).

 Attention!
 An uneven adjustment dimension on the hand release can cause the brake to malfunction.

10. After installing the release cover, screw the hand release rod (15) into the switch bracket (12) and tighten it. The hand release rod (15) must be secured against loosening using a screw-securing product, e.g. Loctite 243.

Maintenance
ROBA-stop®-M brakes are mainly maintenance-free.
However, the rotor (3) is subject to operational wear.
The friction linings are robust and wear-resistant. This ensures a particularly long service lifetime of the brake.
If the rotor (3) does become worn due to the high total friction work, and the function of the brake can no longer be guaranteed, the brake can be re-set to its functional state by replacing the rotor. For this, the brake must be cleaned thoroughly.
The wear condition of the rotor (3) is determined by measuring the release voltage (this must not exceed max. 90 % of the nominal voltage on a warm brake), or by measuring the rotor thickness on a dismantled brake (“minimum rotor thickness” acc. Table in the currently valid Installation and Operational Instructions). On sizes 500 and 1000 there is an air gap inspection opening. This means that the brake does not have to be dismantled.

 Attention!
 The brake function cannot be guaranteed on brakes with a reduced braking torque and/or operation with a fast-acting rectifier if the friction linings are heavily worn.
Unpermittedly high wear relaxes the thrust springs (6), leading to a drop in torque.
Technical Data – Installation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection dimension</td>
<td>2 4 8 16 32 60 100 150 250 500 1000</td>
</tr>
<tr>
<td>Number of rotations</td>
<td>Y [-]</td>
</tr>
<tr>
<td>Standard brake</td>
<td>F [N]</td>
</tr>
<tr>
<td>Holding brake</td>
<td>F [N]</td>
</tr>
<tr>
<td>Release force</td>
<td>Y [-]</td>
</tr>
<tr>
<td>Release angle</td>
<td>[-]</td>
</tr>
<tr>
<td>Fixing screws (8)</td>
<td>DIN</td>
</tr>
<tr>
<td>Tightening torque T<sub>x</sub> [Nm]</td>
<td>2.5 2.5 5.0 9.0 9.0 22 22 22 45 45 83</td>
</tr>
</tbody>
</table>

Permitted hub bores Ø d_{max}

<table>
<thead>
<tr>
<th>Type 891.0_ . Type 891.2_ .</th>
<th>6885/1 [mm]</th>
<th>13 13 18 22 30 32 42 45 55 75 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyway JS9</td>
<td>6885/3 [mm]</td>
<td>15 15 20 25 - 35 45 50 60 80 -</td>
</tr>
<tr>
<td>Keyway P9</td>
<td>6885/1 [mm]</td>
<td>13 13 18 20 28 32 42 45 50 75 90</td>
</tr>
<tr>
<td>Keyway P9</td>
<td>6885/3 [mm]</td>
<td>15 15 20 22 30 - 45 50 55 80 -</td>
</tr>
<tr>
<td>Keyway JS9</td>
<td>6885/1 [mm]</td>
<td>13 13 18 20 28 32 42 45 55 75 90</td>
</tr>
<tr>
<td>Keyway P9</td>
<td>6885/3 [mm]</td>
<td>15 15 20 25 - 35 45 50 - - -</td>
</tr>
</tbody>
</table>

Braking torque adjustments

<table>
<thead>
<tr>
<th>Type 891.8_ . Type 891.7_ .</th>
<th>891.1_ . Type 891.2_ .</th>
<th>891.3_ . Type 891.4_ .</th>
<th>891.5_ .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding brake</td>
<td>891.8_ . [Nm]</td>
<td>2.5 5 10 20 40 75 125 210 360 700 1400</td>
<td></td>
</tr>
<tr>
<td>Standard brake</td>
<td>891.1_ . [Nm]</td>
<td>2.4 4 8 16 32 60 100 150 250 500 1000</td>
<td></td>
</tr>
<tr>
<td>Braking torque [Nm]</td>
<td>891.3_ . [Nm]</td>
<td>1.4 2.8 5.5 11 22 41 70 100 180 350 700</td>
<td></td>
</tr>
<tr>
<td>891.5_ . [Nm]</td>
<td>0.7 1.4 2.8 5.5 11 21 - - -</td>
<td>200 400</td>
<td></td>
</tr>
</tbody>
</table>

1) Brake operation only possible with overexcitation.
2) The braking torque (switching torque) is the torque effective in the shaft train of a slipping brake with a sliding speed of 1 m/s in relation to the mean friction radius (acc. VDE 0580/07.2000).
Due to operating parameters such as sliding speed, pressing or temperature the wear values can only be considered guideline values.

When using a brake with a friction disk (Type 891.2_._.), the max. friction work and friction power must be reduced by 30% for Sizes 2 – 16 and by 50% for Sizes 32 – 60. The wear values $Q_{r,0.1}$ and $Q_{r,g}$ are therefore not valid.

Brake Size Selection

1. **Brake selection**

 \[
 M_{\text{act}} = \frac{9550 \times P}{n} \times K \leq M_z \quad [\text{Nm}]
 \]

 \[
 t_v = \frac{J \times n}{9.55 \times M_z} \quad [\text{sec}]
 \]

 \[
 M_v = M_{u} + (\cdot)^* M_{l} \quad [\text{Nm}]
 \]

 Key:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>[kgm²]</td>
<td>Mass moment of inertia</td>
</tr>
<tr>
<td>K</td>
<td>[-]</td>
<td>Safety factor ($) 1.5 – 3 x according to conditions</td>
</tr>
<tr>
<td>M_{act}</td>
<td>[Nm]</td>
<td>Required braking torque</td>
</tr>
<tr>
<td>M_{u}</td>
<td>[Nm]</td>
<td>Load torque</td>
</tr>
<tr>
<td>M_{l}</td>
<td>[Nm]</td>
<td></td>
</tr>
</tbody>
</table>

2. **Inspection of thermic load**

 \[
 Q_r = \frac{J \times n^2}{182.4} \times \frac{M_z}{M_v} \quad [\text{J/braking}]
 \]

 Table 4

<table>
<thead>
<tr>
<th>Friction work</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>per 0.1 mm wear</td>
<td>2</td>
</tr>
<tr>
<td>Standard brake Type 891.0_...</td>
<td>$Q_{r,0.1}$</td>
</tr>
<tr>
<td>Holding brake Type 891.1_...</td>
<td>$Q_{r,0.1}$</td>
</tr>
<tr>
<td>up to rotor replacement</td>
<td></td>
</tr>
<tr>
<td>Standard brake Type 891.0_...</td>
<td>$Q_{r,g}$</td>
</tr>
<tr>
<td>Holding brake Type 891.1_...</td>
<td>$Q_{r,g}$</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Mass moment of inertia</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor + hub with d_{max}</td>
<td>2</td>
</tr>
<tr>
<td>Type 891.0_... (Metal rotor)</td>
<td>$J_{\text{h,h}}$</td>
</tr>
<tr>
<td>Type 891.1_... (Metal rotor)</td>
<td></td>
</tr>
<tr>
<td>Type 891.2_... (Friction lining rotor)</td>
<td>$J_{\text{h,h}}$</td>
</tr>
</tbody>
</table>
ROBA-stop®-M – Friction-Power Diagrams

Permitted friction work at other speeds (customer specific)

The permitted friction work at specific customer speeds can also be calculated using linear interpolation between the maximum speed and reference speed.

Data

<table>
<thead>
<tr>
<th>ROBA-stop®-M</th>
<th>Size</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>1/h</td>
<td>10</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>(n_{\text{max}})</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>Customer-specific speed</td>
<td>n</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>Reference speed</td>
<td>(n_{\text{ref}})</td>
<td>750 rpm</td>
</tr>
</tbody>
</table>

Friction power: see friction power diagram

Friction power at reference speed \(Q_{\text{n}_{\text{ref}}}\) 140000 J

Friction power at maximum speed \(Q_{\text{n}_{\text{max}}}\) 84000 J

Calculation Example

\[
Q_n = Q_{n_{\text{ref}}} \cdot \frac{(Q_{n_{\text{max}}} - Q_{n_{\text{ref}}})}{(n_{\text{max}} - n_{\text{ref}})} \times (n - n_{\text{ref}})
\]

\[
Q_{n_{\text{max}}} = 140000 \cdot \frac{(140000 - 84000)}{(2500 - 750)} \times (1500 - 750)
\]

\[
Q_n = 116000 \text{ J}
\]
Permitted friction work at other speeds (customer specific)

The permitted friction work at specific customer speeds can also be calculated using linear interpolation between the maximum speed and reference speed.

Calculation Example

\[
Q_n = Q_{n_{\text{ref}}} - \frac{(Q_{n_{\text{max}}} - Q_{n_{\text{ref}}})}{(n_{\text{max}} - n_{\text{ref}})} \times (n - n_{\text{ref}})
\]

\[
Q_n = 88000 - \frac{(88000 - 50000)}{(1500 - 750)} \times (1100 - 750)
\]

\[
Q_n = 69334 \text{ J}
\]

Data

ROBA-stop®-M

<table>
<thead>
<tr>
<th>Size</th>
<th>Switching frequency</th>
<th>Maximum speed</th>
<th>Customer-specific speed</th>
<th>Reference speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1/h</td>
<td>1500 rpm</td>
<td>1100 rpm</td>
<td>750 rpm</td>
</tr>
</tbody>
</table>

Friction power: see friction power diagram

Friction power at reference speed \(Q_{n_{\text{ref}}} = 88000 \text{ J} \)

Friction power at maximum speed \(Q_{n_{\text{max}}} = 50000 \text{ J} \)
ROBA-stop®-M – Further Options

In addition to the standard brakes, mayr® power transmission provides a multitude of further designs, which cannot be described in detail in this catalogue.

Some of the most frequently requested options are:

- Microswitch / proximity switch for switching condition indication (release monitoring), Fig. 1
- Microswitch for wear indication (wear monitoring), Fig. 2
- Customer-specific flange plate, Fig. 3
- IP65 design for continuous shafts, Fig. 4
- Noise damping (O-ring damping between the gear hub and the rotor), Fig. 5
- ACH = Anti-condensation heating, Fig. 6
- Lockable hand release

Please contact mayr® power transmission for further information.

Release monitoring

When the magnetic coil in the coil carrier (2) is energised, the armature disk (3) is pulled towards the coil carrier (2). The microswitch / proximity switch (1) emits a signal and the brake is released.

![Fig. 1](image1)

Continuous shaft with IP65

The enclosed design (IP65) is equipped with a sealing plug (sizes 8 to 500) or with a sealing cover (size 1000) (see Type 891..14.1, page 5) as part of the standard delivery.

A radial shaft sealing ring (1) is installed in the coil carrier (2) on continuous shafts.

![Fig. 4](image2)

Wear monitoring

Due to wear on the rotor (5), the nominal air gap “a” between the coil carrier (2) and the armature disk (3) increases. If the limit air gap (see table in the Installation and Operational Instructions) is reached, the microswitch contact (1) switches over and emits a signal. The rotor (5) must be replaced.

![Fig. 2](image3)

Damping rotor/toothed hub

If vibrations in the drive line cannot be avoided, an O-ring (1) is used to damp backlash between the toothed hub (6) and the rotor (5).

![Fig. 5](image4)

Special flange plate

We offer a range of flange plates for customer-specific solutions, such as for example the special flange plate shown in Fig. 7 (1) with customer-specific centering (8) and sealing (7).

![Fig. 3](image5)

Anti-condensation heating

The anti-condensation heating (1) is used to prevent condensation formation inside the brake.

Its usage is especially recommended at temperatures below 0 °C or in high air humidity.

![Fig. 6](image6)
ROBA-stop®-M – Further Options

Lockable hand release
In de-energised condition, the brake with lockable hand release can be released manually. By deflecting the hand release rod (1), the armature disk (3) is pushed against the thrust springs (4) onto the coil carrier (2) and the braking torque is removed, Figs. 7a and 7b.

<table>
<thead>
<tr>
<th>Coil</th>
<th>Hand release in starting position</th>
<th>Hand release in engagement position</th>
</tr>
</thead>
<tbody>
<tr>
<td>de-energised</td>
<td>Shaft braked</td>
<td>Shaft runs free</td>
</tr>
<tr>
<td>energised</td>
<td>Shaft runs free</td>
<td>Shaft runs free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double rotor design
Double rotor design for increased torque at small outer diameter.

IP67
For a higher protection IP67 see our product ROBA-stop®-S.
ROBA-stop®-M – Further Options

Certified Cold Climate safety brakes for wind power plants (Type 891.4_ _._)

The Cold Climate Version of our ROBA-stop®-M safety brake sets new standards for pitch and yaw brakes in low-temperature applications. It is the only electromagnetic safety brake certified by Germanischer Lloyd (GL) for applications to -40 °C.

These certified pitch and yaw safety brakes work reliably even in the most arduous climatic conditions and ensure the operation of your systems – even at temperatures of minus 40 °C.
ROBA-stop®-M – Further Options

Certified Cold Climate safety brakes for wind power plants (Type 891.4_._._)

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>Size</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal braking torque</td>
<td>Standard</td>
<td>Type 891.41_._.</td>
<td>M_{nenn} [Nm]</td>
<td>20</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Reduced</td>
<td>Type 891.42_._.</td>
<td>M_{nenn} [Nm]</td>
<td>17</td>
<td>34</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Reduced</td>
<td>Type 891.43_._.</td>
<td>M_{nenn} [Nm]</td>
<td>14</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Reduced</td>
<td>Type 891.44_._.</td>
<td>M_{nenn} [Nm]</td>
<td>10</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Reduced</td>
<td>Type 891.45_._.</td>
<td>M_{nenn} [Nm]</td>
<td>7</td>
<td>13.5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Increased</td>
<td>Type 891.47_._.</td>
<td>M_{nenn} [Nm]</td>
<td>23</td>
<td>46</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Increased</td>
<td>Type 891.48_._.</td>
<td>M_{nenn} [Nm]</td>
<td>26</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Electrical power</td>
<td>P_{nenn} [W]</td>
<td>38</td>
<td>46</td>
<td>69</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>n_{nmax} [rpm]</td>
<td>3500</td>
<td>3000</td>
<td>3000</td>
<td>2500</td>
<td>1500</td>
</tr>
<tr>
<td>Weight</td>
<td>Standard brake</td>
<td>Type 891.41_._.</td>
<td>m [kg]</td>
<td>3.4</td>
<td>4.5</td>
<td>7.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permitted hub bore</th>
<th>Size</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varnothing d_{H7}$</td>
<td>Type 891.41_.. to Type 891.45._.</td>
<td>Keyway JS9</td>
<td>6885/1</td>
<td>min.</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max.</td>
<td>23</td>
<td>28.5</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6885/3</td>
<td>min.</td>
<td>17.5</td>
<td>21.5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max.</td>
<td>24</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>$\varnothing d_{H7}$</td>
<td>Type 891.47_.. to Type 891.48._.</td>
<td>Keyway JS9</td>
<td>6885/1</td>
<td>min.</td>
<td>14.5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max.</td>
<td>21.5</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6885/3</td>
<td>min.</td>
<td>17.5</td>
<td>22.5</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max.</td>
<td>22.5</td>
<td>29.5</td>
<td>-</td>
</tr>
</tbody>
</table>

We reserve the right to make dimensional and constructional alterations.

Order Number

<table>
<thead>
<tr>
<th>Nominal braking torque Standard</th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Braking torque adjustment Reduced</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking torque adjustment Reduced</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking torque adjustment Reduced</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking torque adjustment Reduced</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking torque adjustment Increased</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking torque adjustment Increased</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard brake CCV</th>
<th>4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed design IP66</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacho design</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil voltage [VDC]</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hub bore $\varnothing d_{H7}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyway acc. DIN 6885/1 or DIN 6885/3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: 16 / 891.430.0 / 24 / 16 / 6885/1

1) See Technical Data.
ROBA-stop®-M – Switching Times

Switching Times

The values stated in the table are mean values which refer to the nominal air gap and the nominal torque on a warm brake.

<table>
<thead>
<tr>
<th>Nominal torque Type 891_1__</th>
<th>M\textsubscript{Br} [Nm]</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection time DC-side switching</td>
<td>t\textsubscript{1} [ms]</td>
<td>10</td>
<td>18</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>55</td>
<td>68</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>AC-side switching t\textsubscript{1} [ms]</td>
<td>100</td>
<td>160</td>
<td>220</td>
<td>320</td>
<td>400</td>
<td>500</td>
<td>640</td>
<td>730</td>
<td>1100</td>
<td>1100</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Response delay on connection DC-side switching</td>
<td>t\textsubscript{11} [ms]</td>
<td>6</td>
<td>12</td>
<td>16</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>38</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>AC-side switching</td>
<td>80</td>
<td>130</td>
<td>175</td>
<td>240</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>700</td>
<td>700</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Separation 2</td>
<td>t\textsubscript{2} [ms]</td>
<td>33</td>
<td>36</td>
<td>54</td>
<td>84</td>
<td>120</td>
<td>180</td>
<td>216</td>
<td>264</td>
<td>348</td>
<td>480</td>
<td>336</td>
</tr>
<tr>
<td>Nominal torque Type 891_2__</td>
<td>M\textsubscript{Br} [Nm]</td>
<td>1.7</td>
<td>3.4</td>
<td>6.8</td>
<td>13.5</td>
<td>27</td>
<td>51</td>
<td>85</td>
<td>125</td>
<td>215</td>
<td>400</td>
<td>840</td>
</tr>
<tr>
<td>Connection time DC-side switching</td>
<td>t\textsubscript{1} [ms]</td>
<td>16</td>
<td>29</td>
<td>32</td>
<td>48</td>
<td>80</td>
<td>88</td>
<td>109</td>
<td>128</td>
<td>160</td>
<td>160</td>
<td>288</td>
</tr>
<tr>
<td>AC-side switching</td>
<td>160</td>
<td>256</td>
<td>352</td>
<td>512</td>
<td>640</td>
<td>800</td>
<td>1024</td>
<td>1168</td>
<td>1760</td>
<td>1760</td>
<td>1920</td>
<td></td>
</tr>
<tr>
<td>Response delay on connection DC-side switching</td>
<td>t\textsubscript{11} [ms]</td>
<td>9.6</td>
<td>19</td>
<td>26</td>
<td>40</td>
<td>56</td>
<td>56</td>
<td>61</td>
<td>64</td>
<td>80</td>
<td>80</td>
<td>112</td>
</tr>
<tr>
<td>AC-side switching</td>
<td>128</td>
<td>208</td>
<td>280</td>
<td>384</td>
<td>480</td>
<td>560</td>
<td>640</td>
<td>720</td>
<td>1120</td>
<td>1120</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Separation time t\textsubscript{2} [ms]</td>
<td>24</td>
<td>26</td>
<td>39</td>
<td>61</td>
<td>87</td>
<td>130</td>
<td>157</td>
<td>191</td>
<td>252</td>
<td>348</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Nominal torque Type 891_3__</td>
<td>M\textsubscript{Br} [Nm]</td>
<td>1.4</td>
<td>2.8</td>
<td>5.5</td>
<td>11</td>
<td>22</td>
<td>42</td>
<td>70</td>
<td>100</td>
<td>180</td>
<td>350</td>
<td>680</td>
</tr>
<tr>
<td>Connection time DC-side switching</td>
<td>t\textsubscript{1} [ms]</td>
<td>22</td>
<td>40</td>
<td>44</td>
<td>66</td>
<td>110</td>
<td>121</td>
<td>150</td>
<td>176</td>
<td>220</td>
<td>220</td>
<td>396</td>
</tr>
<tr>
<td>AC-side switching</td>
<td>220</td>
<td>352</td>
<td>484</td>
<td>704</td>
<td>880</td>
<td>1100</td>
<td>1408</td>
<td>1606</td>
<td>2420</td>
<td>2420</td>
<td>2640</td>
<td></td>
</tr>
<tr>
<td>Response delay on connection DC-side switching</td>
<td>t\textsubscript{11} [ms]</td>
<td>13</td>
<td>26</td>
<td>35</td>
<td>55</td>
<td>77</td>
<td>77</td>
<td>84</td>
<td>88</td>
<td>110</td>
<td>66</td>
<td>154</td>
</tr>
<tr>
<td>AC-side switching</td>
<td>176</td>
<td>286</td>
<td>385</td>
<td>528</td>
<td>660</td>
<td>770</td>
<td>880</td>
<td>990</td>
<td>1540</td>
<td>1540</td>
<td>1650</td>
<td></td>
</tr>
<tr>
<td>Separation time t\textsubscript{2} [ms]</td>
<td>21</td>
<td>23</td>
<td>34</td>
<td>53</td>
<td>75</td>
<td>113</td>
<td>135</td>
<td>165</td>
<td>218</td>
<td>300</td>
<td>203</td>
<td></td>
</tr>
</tbody>
</table>

1) Standard brakes with braking torque adjustment Type 891_4__, and Type 891_5__ have significantly longer connection times t\textsubscript{1} and must not be used for switching-time relevant applications.

2) The separation time t\textsubscript{2} of holding brakes is 1.4 times longer than the separation time of standard brakes (Type 891_1__).

3) Value for operation with overexcitation

![Diagram 5](image-url)
Diagram 5: Switching times for brake operation with coil nominal voltage

Key:
- M\textsubscript{Br} = Braking torque
- M\textsubscript{L} = Load torque
- t\textsubscript{1} = Connection time
- t\textsubscript{11} = Response delay on connection
- t\textsubscript{2} = Separation time
- U\textsubscript{N} = Coil nominal voltage
ROBA-stop®-M – Electrical Connection

Electrical Connection and Wiring

DC current is necessary for operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (±10 % tolerance). Operation can take place with alternating voltage using a mayr®-DC voltage module or another suitable DC power supply. The connection possibilities can vary dependent on the brake equipment. Please follow the exact connections according to the Wiring Diagram. The manufacturer and the user must observe the applicable regulations and standards (e.g. DIN EN 60204-1 and DIN VDE 0680). Their observance must be guaranteed and double-checked!

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Device Fuses

To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Switching Behaviour

The reliable operational behaviour of a brake is to a large extent dependent on the switching mode used. Furthermore, the switching times are influenced by the braking torque adjustment, temperature and the air gap between the armature disk and the coil carrier (dependent on the wear condition of the linings).

Magnetic Field Build-up

When the voltage is switched on, a magnetic field is built up in the brake coil, which attracts the armature disk to the coil carrier and releases the brake.

• Field Build-up with Normal Excitation

If the magnetic coil is energised with nominal voltage, the coil current does not immediately reach its nominal value. The coil inductivity causes the current to increase slowly as an exponential function. Accordingly, the build-up of the magnetic field takes place more slowly and the braking torque drop (curve 1, diagram 6) is also delayed.

• Field Build-up with Overexcitation

A quicker drop in braking torque is achieved if the coil is temporarily placed under a higher voltage than the nominal voltage, as the current then increases more quickly. Once the brake is released, it needs to be switched over to the nominal voltage (curve 2, diagram 6). The relationship between overexcitation and separation time \(t_2 \) is roughly indirectly proportional. This means that, using overexcitation voltage \(U_0 \) (≈ doubled nominal voltage \(U_N \)), the separation time \(t_2 \) for release of the brake is halved. The ROBA®-switch fast acting rectifier works on this principle.

Operation with overexcitation requires an inspection of:
- the required overexcitation time \(t_0 \)
- as well as the RMS coil capacity \(** \) with a cycle frequency higher than 1 cycle per minute (see page 14).

* Overexcitation time \(t_0 \)

Increased wear, and therefore an increasing air gap as well as coil heating lengthen the separation times \(t_2 \) for the brake. For this reason, at least double the separation time \(t_2 \) at nominal voltage must be selected as overexcitation time \(t_0 \) on each brake size

The spring forces also influence the brake separation times \(t_2 \):
Higher spring forces increase the separation times \(t_2 \) and lower spring forces reduce the separation times \(t_2 \).
Coil capacity P

\[P \leq P_N \]

The coil capacity \(P \) must not be larger than \(P_N \). Otherwise the coil may fail due to thermal overload.

Calculations:

- RMS coil capacity dependent on switching frequency, overexcitation, reduction in capacity and duty cycle:
 \[P = \frac{P_O \times t_O + P_H \times t_H}{T} \]

- Coil nominal capacity (catalogue values, Type tag):
 \[P_N \]

- Coil capacity on overexcitation:
 \[P_O = \left(\frac{U_O}{U_N} \right)^2 \times P_N \]

- Coil capacity at reduced capacity:
 \[P_H = \left(\frac{U_H}{U_N} \right)^2 \times P_N \]

- Overexcitation time:
 \(t_O \)

- Time of operation with reduction in capacity:
 \(t_H \)

- Time without voltage:
 \(t_{off} \)

- Time of operation (\(t_O + t_H \)):
 \(t \)

- Overexcitation voltage (bridge voltage):
 \(U_O \)

- Holding voltage (half-wave voltage):
 \(U_H \)

- Coil nominal voltage:
 \(U_N \)

Time Diagram:

For brakes, which do not require overexcitation, the holding voltage \(U_H \) may be lower than the nominal voltage \(U_N \), e.g. on power reduction to reduce the coil temperature.

Magnetic Field Removal

- **AC-side Switching**

 The power circuit is interrupted in front of the mayr®-DC voltage module. The magnetic field slowly reduces. This delays the rise in braking torque.

 When switching times are not important, please switch AC-side, as no protective measures are necessary for the coil and the switching contacts.

 AC-side switching means **low-noise switching**; however, the brake engagement time is longer (approx. 6 – 10 times longer than with DC-side switch-off), use for non-critical braking times.

- **DC-side Switching**

 The power circuit is interrupted between the mayr®-DC voltage module and the coil as well as mains-side. The magnetic field reduces extremely quickly. This causes a quick rise in braking torque.

 When switching DC-side, high voltage peaks are produced in the coil, which can lead to wear on the contacts from sparks and to destruction of the insulation.

 DC-side switching means **short brake engagement times** (e.g. for **EMERGENCY STOP** operation); however, louder switching noises.

- **Protection Circuit**

 When using DC-side switching, the coil must be protected by a suitable protection circuit according to VDE 0580, which is integrated in mayr®-DC voltage module. To protect the switching contact from consumption when using DC-side switching, additional protective measures may be necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operating current are sufficient. Depending on the application, the switching contact can also be protected by other protection circuits (e.g. mayr®-spark quenching unit), although this may of course then alter the switching times.
Electronic accessories for safety brakes:

Function / Task

<table>
<thead>
<tr>
<th>Module</th>
<th>Type 024.000.6</th>
<th>Type 025.000.6</th>
<th>Type 017._00.2</th>
<th>Type 017.110.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Half-wave rectifier</td>
<td>Bridge rectifier</td>
<td>ROBA®-switch</td>
<td>ROBA®-switch</td>
</tr>
</tbody>
</table>

| Overexcitation/Power reduction | X | X |
| Integrated DC-side disconnection | | X |

| Mains voltage / Input voltage | up to 600 VAC | up to 230 VAC | 100 to 500 VAC | 100 to 500 VAC |
| Output voltage / Overexcitation voltage | up to 270 VDC dependent on the mains voltage VDC = 0.45 x VAC | up to 207 VDC dependent on the mains voltage VDC = 0.9 x VAC | 90 to 450 VDC dependent on the mains voltage VDC = 0.9 x VAC | 90 to 450 VDC dependent on the mains voltage VDC = 0.9 x VAC |

| Holding voltages | 45 to 225 VDC dependent on the mains voltage VDC = 0.45 x VAC | 45 to 225 VDC dependent on the mains voltage VDC = 0.45 x VAC |

| Switching times | 0.05 to 2 s | 0.05 to 2 s |
| Output current | 4.0 A | 2.5 A | 3.0 A (at 250 VAC) | 1.5 A |

<table>
<thead>
<tr>
<th>Characteristics / Application</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Standard application</th>
<th>Standard application, preferred for noise-damped brakes</th>
<th>Short separation time</th>
<th>Short separation time and short connection time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact design</td>
<td>Compact design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 18 |
Controlling — Protecting

Functions of the mayr®-DC Voltage Modules

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>018.100.2</td>
<td>019.100.2</td>
<td>028.100.2</td>
<td>068.200.2</td>
<td>021.100.2</td>
<td>070.000.6</td>
</tr>
<tr>
<td>ROBA®-switch 24V</td>
<td>ROBA®-multiswitch</td>
<td>ROBA®-brake-checker plus DC</td>
<td>ROBA®-torqcontrol</td>
<td>ROBA®-SBCplus</td>
<td>Spark quenching unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Module Type</th>
<th>Module Type</th>
<th>Module Type</th>
<th>Module Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>024.000.6</td>
<td>025.000.6</td>
<td>017.00.2</td>
<td>017.110.2</td>
<td>018.100.2</td>
</tr>
<tr>
<td>Half-wave rectifier</td>
<td>Bridge rectifier</td>
<td>ROBA®-switch</td>
<td>ROBA®-switch</td>
<td>ROBA®-switch 24V</td>
</tr>
<tr>
<td>019.00.2</td>
<td>025.000.6</td>
<td>017._00.2</td>
<td>017.110.2</td>
<td>018.100.2</td>
</tr>
<tr>
<td>ROBA®-switch</td>
<td>Type</td>
<td>Module Type</td>
<td>Module Type</td>
<td>Module Type</td>
</tr>
<tr>
<td>017._00.2</td>
<td>ROBA®-multiswitch</td>
<td>ROBA®-switch</td>
<td>ROBA®-switch</td>
<td>ROBA®-switch 24V</td>
</tr>
<tr>
<td>100 to 275 VAC (Size 10)</td>
<td>100 to 500 VAC (Size 20)</td>
<td>24 VDC (Size 2)</td>
<td>24 VDC (Size 4)</td>
<td>24 VDC or 48 VDC</td>
</tr>
<tr>
<td>90 VDC (Size 10)</td>
<td>180 VDC (Size 20)</td>
<td>24 VDC (Size 2)</td>
<td>24 VDC or 48 VDC</td>
<td>24 VDC or 48 VDC</td>
</tr>
<tr>
<td>52 VDC (Size 10)</td>
<td>104 VDC (Size 20)</td>
<td>4 / 6 / 8 / 12 / 16 VDC (Size 2)</td>
<td>4 / 6 / 8 / 12 / 16 VDC (Size 24)</td>
<td>6 VDC</td>
</tr>
<tr>
<td>8 VDC</td>
<td>12 VDC</td>
<td>8 / 12 / 16 / 24 / 32 VDC (Size 4)</td>
<td>8 / 12 / 16 / 24 / 32 VDC (Size 48)</td>
<td>8 VDC</td>
</tr>
<tr>
<td>16 VDC</td>
<td>24 VDC</td>
<td>constant / independent of the mains voltage</td>
<td>constant / independent of the input voltage</td>
<td>5.0 A</td>
</tr>
<tr>
<td>2.0 A (Size 10)</td>
<td>2.0 A (Size 20)</td>
<td>5.0 A (Size 2)</td>
<td>5.0 A (Size 4)</td>
<td>10.0 A (24 VDC)</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>adapted to brake specifications</td>
<td>adapted to brake specifications</td>
<td>0.1 s to 2.5 s</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>10.0 A (48 VDC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplying</th>
<th>Monitoring</th>
<th>Supplying</th>
<th>Monitoring</th>
<th>Safe control and monitoring</th>
<th>Protecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics / Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard application</td>
<td>Standard application,</td>
<td>Standard application</td>
<td>Standard application</td>
<td>Standard application</td>
</tr>
<tr>
<td>Compact design</td>
<td>Compact design</td>
<td>Compact design</td>
<td>Compact design</td>
<td>Compact design</td>
</tr>
<tr>
<td>Short separation time</td>
</tr>
<tr>
<td>No wear on contacts</td>
</tr>
<tr>
<td>Short separation time and short connection time</td>
</tr>
<tr>
<td>No wear on contacts</td>
</tr>
<tr>
<td>Integrated release and drop-out recognition</td>
<td>Display of the brake wear condition</td>
<td>Setting / Control of spring force and braking torque</td>
<td>Integrated release and drop-out recognition</td>
<td>Display of the brake wear condition</td>
</tr>
<tr>
<td>Display of the brake wear condition</td>
<td>Short separation time and short connection time</td>
<td>Display of the brake wear condition</td>
<td>Short separation time and short connection time</td>
<td>Display of the brake wear condition</td>
</tr>
<tr>
<td>No wear on contacts</td>
</tr>
<tr>
<td>Setting / Control of spring force and braking torque</td>
<td>Short separation time and short connection time</td>
<td>Display of the brake wear condition</td>
<td>Short separation time and short connection time</td>
<td>Display of the brake wear condition</td>
</tr>
<tr>
<td>Controls and monitors up to two ROBA-stop® safety brakes, especially in applications, which have to fulfil requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061</td>
<td>Controls and monitors up to two ROBA-stop® safety brakes, especially in applications, which have to fulfil requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061</td>
<td>Controls and monitors up to two ROBA-stop® safety brakes, especially in applications, which have to fulfil requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061</td>
<td>Controls and monitors up to two ROBA-stop® safety brakes, especially in applications, which have to fulfil requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061</td>
<td>Controls and monitors up to two ROBA-stop® safety brakes, especially in applications, which have to fulfil requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061</td>
</tr>
<tr>
<td>Reduces switch-off voltage and wear on contacts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mains voltage / Input voltage</th>
<th>Output voltage / Overexcitation voltage</th>
<th>Holding voltages</th>
<th>Output current</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 600 VAC</td>
<td>up to 270 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>up to 230 VAC</td>
<td>up to 107 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>100 to 500 VAC</td>
<td>90 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>100 to 275 VAC</td>
<td>24 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>100 to 450 VAC</td>
<td>90 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>24 VDC</td>
<td>24 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>200 to 500 VAC</td>
<td>180 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>24 VDC</td>
<td>180 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC</td>
<td>52 VDC</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>5.0 A</td>
<td>2.0 A (Size 10)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC</td>
<td>5.0 A (Size 20)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>24 VDC</td>
<td>10.0 A (Size 2)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>2 x 4.5 A</td>
<td>10.0 A (Size 4)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC</td>
<td>2 x 4.5 A</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>24 VDC</td>
<td>5.0 A (Size 4)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>24 VDC or 48 VDC</td>
<td>10.0 A (24 VDC)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>2 x 4.5 A</td>
<td>10.0 A (48 VDC)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC or 48 VDC</td>
<td>5.0 A (48 VDC)</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC or 48 VDC</td>
<td>24 VDC / 2 x 4.5 A</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC or 48 VDC</td>
<td>2 x 4.5 A</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
<tr>
<td>48 VDC or 48 VDC</td>
<td>24 VDC / 2 x 4.5 A</td>
<td>45 to 225 VDC</td>
<td>4.0 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switching times</th>
<th>Output current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 to 2 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
<tr>
<td>0.15 s / 0.45 s / 1 s, 1.5 s / 2.15 s</td>
<td>4.0 A</td>
</tr>
</tbody>
</table>
Half-wave and bridge rectifiers Type 02_.000.6

Application
Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA-quick®, ROBATIC®), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function
The AC input voltage U_I is rectified in order to operate consumers with DC voltage U_O. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.

Electrical Connection (Terminals)
1 + 2 Input voltage
3 + 4 Connection for an external switch for DC-side switching
5 + 6 Coil
7 – 10 Free nc terminals (only for Size 2)

Order Number

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>30</td>
<td>25</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>30</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>3/4</td>
<td>64</td>
<td>30</td>
<td>54</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Sizes
1 to 4 Half-wave rectifier
5 Bridge rectifier

Technical Data

<table>
<thead>
<tr>
<th>Calculation output voltage</th>
<th>Bridge rectifier</th>
<th>Half-wave rectifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDC = VAC x 0.9</td>
<td>VDC = VAC x 0.45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>1/025</th>
<th>2/025</th>
<th>1/024</th>
<th>2/024</th>
<th>3/024</th>
<th>4/024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input voltage ± 10% U_{I} [VAC]</td>
<td>230</td>
<td>230</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Max. output voltage U_{O} [VDC]</td>
<td>207</td>
<td>207</td>
<td>180</td>
<td>180</td>
<td>225</td>
<td>270</td>
</tr>
<tr>
<td>Output current I_{max} [A]</td>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>at max. 85 °C I_{max} [A]</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>$U_{AC} = 115$ VAC ≤ 50 °C P_{N} [W]</td>
<td>260</td>
<td>260</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up to 85 °C P_{N} [W]</td>
<td>177</td>
<td>177</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$U_{AC} = 230$ VAC ≤ 50 °C P_{N} [W]</td>
<td>517</td>
<td>517</td>
<td>312</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>up to 85 °C P_{N} [W]</td>
<td>352</td>
<td>352</td>
<td>187</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>$U_{AC} = 400$ VAC ≤ 50 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>540</td>
<td>720</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>up to 85 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>324</td>
<td>432</td>
<td>432</td>
<td>432</td>
</tr>
<tr>
<td>$U_{AC} = 500$ VAC ≤ 50 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>900</td>
<td>900</td>
<td>-</td>
</tr>
<tr>
<td>up to 85 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td>$U_{AC} = 600$ VAC ≤ 50 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1080</td>
</tr>
<tr>
<td>up to 85 °C P_{N} [W]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>648</td>
</tr>
<tr>
<td>Rated insulation voltage U_{RMS} [V]</td>
<td>320</td>
<td>320</td>
<td>500</td>
<td>500</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>Pollution degree (insulation coordination) 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Protection
IP65 components, encapsulated / IP20 terminals

Terminals
Cross-section 0.14 – 1.5 mm² (AWG 26-14)

Ambient temperature [°C] -25 to +85

Storage temperature [°C] -40 to +85

Conformity markings
UL, CE, UL, CE, UL, CE, UL, CE, CE

Installation conditions
The installation position can be user-defined. Please ensure sufficient heat dissipation and air convection! Do not install near to sources of intense heat!
ROBA®-switch Type 017.00.2

Application
ROBA®-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA-quick, ROBATIC®) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-switch 017.00.2
- Consumer operation with overexcitation or power reduction
- Input voltage: 100 – 500 VAC
- Maximum output current I_{rms}: 3 A at 250 VAC
- UL-approved

Function
The ROBA®-switch is used for operation at an input voltage U_I of between 100 and 500 VAC, depending on the size. It can switch internally from bridge rectification U_O output voltage to half-wave rectification U_H output voltage. The bridge rectification time can be modified from 0.05 to 2 seconds by exchanging the external resistor (R_{ext}).

Electrical Connection (Terminals)
1 + 2 Input voltage (fitted protective varistor)
3 + 4 Connection for external contact for DC-side switch-off
5 + 6 Output voltage (fitted protective varistor)
7 + 8 R_{ext} for bridge rectification time adjustment

Technical Data
Input voltage see Table 1
Output voltage see Table 1
Protection IP65 components, IP20 terminals, IP10 R_{ext}
Terminal nom. cross-section 1.5 mm² (AWG 22-14)
Ambient temperature -25 °C up to +70 °C
Storage temperature -40 °C up to +70 °C

ROBA®-switch Sizes, Table 1

<table>
<thead>
<tr>
<th>Size</th>
<th>Type 017.000.2</th>
<th>Type 017.100.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Input voltage $\pm 10%$</td>
<td>U_I [VAC]</td>
<td>100–250 200–500 100–250 200–500</td>
</tr>
<tr>
<td>Output voltage</td>
<td>U_H [VDC]</td>
<td>45–113 90–225 45–113 90–225</td>
</tr>
<tr>
<td>Output current at $\leq 45{\degree}C$ I_{rms} [A]</td>
<td>2.0 1.8 3.0 2.0</td>
<td></td>
</tr>
<tr>
<td>Output current at max. 70 °C I_{rms} [A]</td>
<td>1.0 0.9 1.5 1.0</td>
<td></td>
</tr>
<tr>
<td>Conformity markings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order Number

```
_streamed_data_017.00.2
```

Accessories:
Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1802911
ROBA®-switch Type 017.110.2

Application
ROBA®-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-switch 017.110.2
- Integrated DC-side disconnection (shorter connection time t₁)
- Consumer operation with overexcitation or power reduction
- Input voltage: 100 – 500 VAC
- Maximum output current I_{rms}: 1.5 A
- UL-approved

Function
The ROBA®-switch is used for operation at an input voltage of between 100 and 500 VAC, depending on the size. It can switch internally from bridge rectification U₀ output voltage to half-wave rectification U₉ output voltage. The bridge rectification time can be modified from 0.05 to 2 seconds by exchanging the external resistor (Rₑxₜ).

In addition, the ROBA®-switch features integrated DC-side disconnection. In contrast to the usual DC-side disconnection, no further protective measures or external components are required. The DC-side disconnection is activated as a standard measure (terminals 3 and 4 are not wired) and causes short switching times on the electromagnetic consumer.

The integrated DC-side disconnection is deactivated by fitting a bridge between the terminals 3 and 4, and the coil is de-energised via the freewheeling diode. This has the advantages of gentler braking actions and quieter switching noise. However, this substantially lengthens the switching times (approx. 6 – 10x).

Electrical Connection (Terminals)
1 + 2 Input voltage (fitted protective varistor)
3 + 4 Switching between DC and AC-side disconnection
5 + 6 Output voltage (fitted protective varistor)
7 + 8 Rₑxₜ for bridge rectification time adjustment

Technical Data
Input voltage see Table 1
Output voltage see Table 1
Protection IP65 components, IP20 terminals, IP10 Rₑxₜ
Terminal nom. cross-section 1.5 mm² (AWG 22-14)
Ambient temperature -25 °C up to +70 °C
Storage temperature -40 °C up to +70 °C

Order Number
/ 0 1 7 . 1 1 0 . 2

Dimensions (mm)

ROBA®-switch Sizes, Table 1

<table>
<thead>
<tr>
<th>Size</th>
<th>Input voltage ± 10%</th>
<th>Output voltage</th>
<th>Output current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U₁ [VAC]</td>
<td>U₀ [VDC]</td>
<td>I_{rms} [A]</td>
</tr>
<tr>
<td>10</td>
<td>100 – 250</td>
<td>90 – 225</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>200 – 500</td>
<td>180 – 450</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>U₉ [VDC]</td>
<td>U_H [VDC]</td>
<td>I_{rms} [A]</td>
</tr>
<tr>
<td></td>
<td>45 – 113</td>
<td>45 – 113</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>90 – 225</td>
<td>90 – 225</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Conformity markings
ROBA®-switch 24V Type 018.100.2

Application
ROBA®-switch 24V fast switching modules are used to operate DC consumers with overexcitation or power reduction, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®), electromagnets, electrovalves, etc.

Fast switching module ROBA®-switch 24V 018.100.2
- Consumer operation with overexcitation or power reduction
- Integrated DC-side disconnection
 (shorter connection time t₁)
- Input voltage: 24 VDC
- Max. output current I: 5 A
- UL approved

CAUTION
The ROBA®-switch 24V with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function
The ROBA®-switch 24V units are used for an input voltage of 24 VDC. They can switch internally, meaning that the output voltage switches to holding voltage from the input voltage (=overexcitation voltage) via pulse-width modulation using 20 kHz. The overexcitation time can be adjusted via a DIP switch to 150 ms, 450 ms, 1 s, 1.5 s and 2.15 s. The holding voltage can be adjusted via a further DIP switch to ¼, ½, ⅓ and ⅔ of the input voltage (equals 6 V, 8 V, 12 V and 16 V at an input voltage of 24 V).

In addition, the ROBA®-switch 24V features integrated DC-side disconnection. In contrast to the usual DC-side disconnection, no further protective measures or external components are required. The DC-side disconnection is activated in standard mode and causes short switching times on the electromagnetic consumer. This can, however, be deactivated by installing a bridge between terminals 7 and 8 in order to produce soft brakings and quieter switching noises. However, this substantially lengthens the switching times (approx. 6 – 10x).

Electrical Connection (Terminals)
2 + 3 Input voltage, ground
4 Control input
5 – 7 Input voltage + 24 VDC
8 + 9 Output voltage +
10 Output voltage -

Technical Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage Uᵢ</td>
<td>24 VDC + 20 % / - 10 %</td>
</tr>
<tr>
<td>SELV/PELV</td>
<td></td>
</tr>
<tr>
<td>Output voltage Uₒ</td>
<td>Input voltage Uᵢ</td>
</tr>
<tr>
<td>Output voltage Uₕ</td>
<td>¼, ½, ⅓, ⅔ x Uᵢ ± 20 % can be selected</td>
</tr>
</tbody>
</table>
| Output current Iₑₐₑₑₑᵉᵉᵉของเขา

Dimensions (mm)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>54 mm</td>
</tr>
<tr>
<td>Height</td>
<td>54 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>64 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>6.6 mm</td>
</tr>
</tbody>
</table>

Order Number

<table>
<thead>
<tr>
<th>Size</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 8 . 1 0 0 . 2</td>
</tr>
</tbody>
</table>

CAUTION

The ROBA®-switch 24V with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!
ROBA®-multiswitch Type 019._00.2

Application

ROBA®-multiswitch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA-quick, ROBATIC®) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-multiswitch 019._00.2

- Consistently controlled output voltage in the entire input voltage range
- Consumer operation with overexcitation or power reduction
- Input voltage: 100 – 500 VAC
- Max. output current I_{RMS} : 2 A; 4.5 A
- UL-approved

The ROBA®-multiswitch is used for operation at an input voltage of between 100 and 500 VAC, depending on the size. After switch-on, it emits the rectified bridge voltage for 50 ms and then adjusts automatically to a pre-programmed overexcitation voltage. After the overexcitation time ends, it regulates to the permanently programmed holding voltage. For the overexcitation voltage and holding voltage values of the standard design, please see Table 1. On special designs, deviating values are possible. The overexcitation time can be adjusted via a DIP switch to 150 ms, 450 ms, 1 s, 1.5 s and 2 s.

Electrical Connection (Terminals)

1 + 2 Input voltage (fitted protective varistor)
3 + 4 Connection for external contact for DC-side switch-off
5 + 6 Output voltage (fitted protective varistor)

Technical Data

Input voltage	see Table 1
Frequency	50 – 60 Hz
Output voltage	see Table 1

Type 019.100.2 2 A bei ≤ 45 °C; 1 A at max. 70 °C
Type 019.200.2 4.5 A bei ≤ 45 °C; 2.25 A at max. 70 °C

Protection
IP65 components, IP20 terminals, IP20 DIP switch

Terminal nom. cross-section 1.5 mm² (AWG 22-14)
Ambient temperature -25 °C up to +70 °C
Storage temperature -40 °C up to +70 °C

Order Number

__/019.__00.2

Example:
Order number 20 / 019.100.2 and article number 8225580

Dimensions (mm)

ROBA®-multiswitch units are not suitable for all applications, e.g. use of the ROBA®-multiswitch when operating noise-damped brakes is not possible without taking additional measures. The product’s suitability should be checked before use.

Accessories:
Mounting bracket set for 35 mm rail acc. EN 60715:
Article No. 1802911

<table>
<thead>
<tr>
<th>Size</th>
<th>Type</th>
<th>Input voltage *</th>
<th>Output voltage *</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>019.100.2</td>
<td>100 – 275</td>
<td>90</td>
<td>8186586</td>
</tr>
<tr>
<td></td>
<td>019.100.2</td>
<td>200 – 500</td>
<td>180</td>
<td>8185591</td>
</tr>
<tr>
<td></td>
<td>019.200.2</td>
<td>200 – 500</td>
<td>180</td>
<td>8242954</td>
</tr>
<tr>
<td>20</td>
<td>019.100.2</td>
<td>230</td>
<td>207</td>
<td>8225580</td>
</tr>
<tr>
<td></td>
<td>019.100.2</td>
<td>200 – 500</td>
<td>180</td>
<td>8225580</td>
</tr>
<tr>
<td></td>
<td>019.100.2</td>
<td>230</td>
<td>207</td>
<td>8237887</td>
</tr>
<tr>
<td></td>
<td>019.100.2</td>
<td>300 – 500</td>
<td>240</td>
<td>8220914</td>
</tr>
</tbody>
</table>

* On special designs, deviating values are possible.
The values stated on the Type tag are decisive.
** U_o : overexcitation voltage; U_h : holding voltage

<table>
<thead>
<tr>
<th>Size</th>
<th>Type</th>
<th>Input voltage *</th>
<th>Output voltage *</th>
<th>Article number</th>
</tr>
</thead>
</table>

Example:
Order number 20 / 019.100.2 and article number 8225580
Application
ROBA®-brake-checker monitoring modules are used to operate safety brakes with overexcitation while at the same time monitoring the condition.

Monitoring module ROBA®-brake-checker 028.100.2
• Consumer operation with overexcitation or power reduction
• Controlled output voltage (on reduction)
• Simple adjustment of holding voltage and overexcitation time via a DIP switch
• Fast or slow switch off
• Brake condition recognition (release and drop-out recognition)
• Wear recognition and error recognition
• Wide input voltage range
• Maximum output current I_{rms} : 10 A / 5 A
• Maximum overexcitation current I_o = 20 A / 10 A
• Automatic reduction of the holding voltage U_H

Dimensions (mm)

Function
The ROBA®-brake-checker monitoring module is intended for use with an input voltage of 24 or 48 VDC. The module monitors the switching condition of the brake and emits a signal to provide information on the respective switching condition. Critical conditions (line breakages, wear) can be recognised and the respective signal can be emitted via the warning signal output.

Switching of the output voltage to a controlled holding voltage (see "Table 1") is available as an option. After a brake-specific overexcitation time period, the integrated automatic mode adjusts to the pre-set reduction voltage. The automatic mode can be switched off using a DIP switch.

Electrical Connection (Terminals)

Power terminal
1 Supply voltage +24 VDC / +48 VDC
2 Output voltage +
3 Output voltage -
4 Supply voltage 0 VDC

Signal Terminal
1 Supply voltage 0 VDC
2 Switch-off fast/slow (input)
3 Signal output (release monitoring)
4 24 V (auxiliary voltage for bridging)
5 Supply voltage +24 VDC
6 Start (input)
7 Error output max. 300 mA

Technical Data

Input voltage see Table 1
Output voltage see Table 1
Protection IP65 components, IP20 terminals, IP20 DIP switch
Terminal nominal cross-section
Power terminals 4 mm², (AWG 20-12)
Signal terminals 1.5 mm², (AWG 30-14)
Ambient temperature -25 °C up to +70 °C
Storage temperature -40 °C up to +105 °C

Order Number

CAUTION
The ROBA®-brake-checker with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!
ROBA®-torqcontrol
Adapted braking -
Intelligent braking torque control module

In contrast to car brakes, safety brakes can only distinguish between two operating conditions due to their design, namely “braking torque present” and “no braking torque present”. This is the reason why every braking procedure is carried out with the maximum braking torque available. Just as in a car, gradual, even deceleration is also often desired for devices and machine applications with dynamic braking actions. The new, intelligent braking torque control module ROBA®-torqcontrol by mayr® power transmission therefore offers an economically attractive solution to generate a variable braking torque for ROBA-stop® safety brakes, making it possible to decelerate machines evenly and gently.

Continuous braking torque changes when in operation

Up to now, brakes have been dimensioned with regard to the maximum load where devices with variable loads, for example forklift trucks, are concerned. In case of partial loads, a stronger deceleration than necessary with the full braking torque can lead to damage to the transported goods or even to sliding of the wheels. If, however, the system detects the operating conditions and converts this information into a default signal for the new, intelligent control module by mayr® power transmission, electronic braking torque regulation is possible. Using the new system, the brake specialists have succeeded in continuously changing the contact force on the brake linings and therefore also the braking torque during operation. In this way, machines can be decelerated smoothly, adapted to the respective system requirements. Using the new, intelligent control device by mayr® power transmission, the resulting clamping force for the brake rotor can be specified to 25%, 50% or 75% of the nominal spring force by means of two digital inputs. Alternatively, a continuous, analogue default signal from 0 to 10V is possible. The switching device determines without using a sensor whether the armature disk is attracted or has dropped. This makes it possible to adjust the overexcitation time automatically as desired. With the new braking torque control module, mayr® power transmission provide the possibility to build up control circuits and brake movements intelligently – ideal prerequisites for application in the smart, interconnected machines of the future.

Technical Data

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>ROBA®-torqcontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>24 V or 48 V</td>
</tr>
<tr>
<td>Output current</td>
<td>10 A or 5 A</td>
</tr>
<tr>
<td>Inputs</td>
<td>Start/Stop</td>
</tr>
<tr>
<td></td>
<td>digital braking torque pre-selection 25%, 50%, 75%</td>
</tr>
<tr>
<td></td>
<td>or analogue 0…10 V equals 25…100% torque</td>
</tr>
<tr>
<td>Outputs</td>
<td>release signal</td>
</tr>
<tr>
<td>Adjustable voltage reduction/overexcitation</td>
<td>√</td>
</tr>
<tr>
<td>Automatic overexcitation time or manually adjustable</td>
<td>√</td>
</tr>
<tr>
<td>Release and drop recognition for safety brakes</td>
<td>√</td>
</tr>
<tr>
<td>Dimensions L x W x H</td>
<td>103 x 69 x 30 mm</td>
</tr>
</tbody>
</table>
ROBA®-SBCplus
The safe brake control - for use up to PLe and SIL CL3

Application
The safe brake control ROBA®-SBCplus is used to control and monitor two ROBA-stop® safety brakes, especially in applications, which have to fulfill requirements regarding personal protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061.

Characteristics:

- Safe electronic switching of two brakes
- Input voltage power circuit 24 - 48 VDC
- Connection for up to 2 brakes up to 4.5 A / 24 VDC or 2.25 A / 48 VDC (108 W)
- Output voltage (holding voltage) can be selected as 6,8,12,24,48 VDC
 → Power reduction, temperature reduction, electricity costs reduction
- Overexcitation time configurable
- Feedback inputs release monitoring for proximity switch or microswitch
- Monitoring for plausibility of the feedback
 → Error diagnostics of the brake
- Status and error outputs for feedback to the control
- No mechanic contacts for controlling and monitoring
 → High reliability, no wear, independent of cycle frequency and cycle rate
- Fast (“DC-side”) or slow (“AC-side”) switch off possible
- Galvanic separation between the control part and the power part
 → Prevention of EMC issues
- Four integrated functions:
 Contactor, 24 VDC fast-acting rectifier, safety relay, spark quenching
- Safe holding voltage and overexcitation time
- Safety functions are programmed into the ROBA®-SBCplus and only have to be parameterised
 → Plausibility check integrated and must not be programmed and validated
- Applicable up to PLe and SIL CL3,
 Type examination
 TÜV Süd
 (German Technical Inspectorate)

Maximum switching reliability
The brake control must safely interrupt the current in the magnetic coil on switching off the brake. The ROBA®-SBCplus module works with wear-free electronic semiconductors and thus achieves almost unlimited switching frequencies and switching reliability.

Safe inner configuration
Amongst other things, the internal diagnostics inspections for short circuits, earth short-circuits and line breaks as well as safe overexcitation for releasing the brake and switching to reduced holding voltage when the brake is opened are the components required for “fail-safe” inner configuration.

Numerous safety functions
Numerous safety functions permit comprehensive error diagnostics. The brake voltage is monitored. An excessively high voltage could dangerously extend the drop-out time on switch-off, if, for example, this were to cause a vertical axis to drop to an unpermittedly low level. The monitoring of the switching times, which influence the braking distance, is therefore another component of error diagnostics.

Safe switching condition monitoring
The signal evaluation of the release monitoring with plausibility check permits a switching condition monitoring of the brake. The plausibility is controlled as follows: If voltage is applied, the brake must be opened after a defined time and vice versa. The switching condition monitoring can be used to reliably prevent the drive starting up against a closed brake. In this way, creeping errors, such as gradually increasing wear, which affects the switching times, can be detected.
Spark quenching unit Type 070.000.6

Application
Reduces spark production on the switching contacts occurring during DC-side switch-off of inductive loads.

- Voltage limitation according to VDE 0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2 – 4 compared to freewheeling diodes.

Function
The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of > 3 mm are suitable for this purpose.

Electrical Connection (Terminals)
1 (+) Input voltage
2 (–) Input voltage
3 (–) Coil
4 (+) Coil
5 Free nc terminal
6 Free nc terminal

Technical Data
Input voltage max. 300 VDC, max. 615 V peak (rectified voltage 400 VAC, 50/60 Hz)
Switch-off energy max. 9 J / 2 ms
Power dissipation max. 0.1 Watt
Rated voltage nc terminals 250 V
Protection IP65 components, IP20 terminals
Ambient temperature -25 °C up to +85 °C
Storage temperature -40 °C up to +85 °C
Max. conductor cross-section 2.5 mm², (AWG 26-12)
Max. terminal tightening torque 0.5 Nm

Accessories
Mounting bracket set for 35 mm rail acc. EN 60715:
Article No. 1803201

Order Number

\[_070.000.6 \]
Additional Information

The catalogue contains basic information on pre-selection and dimensioning.

For detailed information on selection, brake dimensioning, electrical connection, installation and initial operation, please see the Installation and Operational Instructions B.8.1.

If you have any questions regarding the selection and dimensioning, please contact our headquarters.

Safety-relevant Applications

Brakes which are used in safety-related applications are to be selected in accordance with the risk assessment EN ISO 12100 and furthermore in accordance with EN ISO 13849-1 through identification of the safety function.

This is in principle the task of the system manufacturer.

Roba-stop®-M standard designs with safety parameters:

- Type 891.10._._ Nominal torque holding brake
- Type 891.01._._ Nominal torque standard
- Type 891.02._._
- Type 891.03._._
- Type 891.07._._
- Type 891.08._._

Customer-specific designs on request.

Safety parameters can be requested if required.

In case of deviating designs, please consult with mayr® power transmission directly.

Secure Control acc. EN ISO 13849-1

For safe control, a brake control module specially developed for such applications, is available. According to SIL 3 Level, two brake circuits can be supplied.

For detailed information please see page 27.

Additional Supply and Control Modules

For controlling the ROBA-stop®-M, additional suitable supply and control modules are available.

For overview and functions, please see page 18/19.

Available quickly as PDF download.

We would be happy to mail you a printed version of the Operational Instructions B.8.1 on request.

These documents are also available as PDF download on our website www.mayr.com.
ROBA-stop®-M – Guidelines

Guidelines on the Declaration of Conformity: A conformity evaluation has been carried out for the product (electromagnetic safety brake) in terms of the EC Low Voltage Directive 2006/95/EC. The Declaration of Conformity is laid out in writing in a separate document and can be requested if required.

Guidelines on the EMC Directive (2014/30/EU): The product cannot be operated independently according to the EMC directive. Due to their passive state, brakes are also non-critical equipment according to the EMC. Only after integration of the product into an overall system can this be evaluated in terms of the EMC. For electronic equipment, the evaluation has been verified for the individual product in laboratory conditions, but not in the overall system.

Guidelines on the Machinery Directive (2006/42/EC): The product is a component for installation into machines according to the Machinery Directive 2006/42/EC. The brakes can fulfil the specifications for safety-related applications in connection with other elements. The type and scope of the required measures result from the machine risk analysis. The brake then becomes a machine component and the machine manufacturer assesses the conformity of the safety device to the directive. It is forbidden to start use of the product until you have ensured that the machine accords with the regulations stated in the directive.

Guidelines on the ATEX Directive: Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. For application of this product in areas where there is a high danger of explosion, it must be classified and marked according to directive 2014/34/EU.

Safety Regulations

Brakes may generate several risks, among others:

- Contact with voltage-carrying components
- Contact with hot surfaces
- Hand injuries
- Danger of seizure
- Magnetic fields

During the risk assessment required when designing the machine or system, the dangers involved must be evaluated and removed by taking appropriate protective measures.

To prevent injury or damage, only professionals and specialists are allowed to work on the devices. They must be familiar with the dimensioning, transport, installation, initial operation, maintenance and disposal according to the relevant standards and regulations.

Application Conditions

The catalogue values are guideline values which have been determined in test facilities. It may be necessary to carry out your own tests for the intended application.

When dimensioning the brakes, please remember that installation situations, braking torque fluctuations, permitted friction work, run-in behaviour and wear as well as general ambient conditions can all affect the given values. These factors should therefore be carefully assessed, and alignments made accordingly.

- Mounting dimensions and connection dimensions must be adjusted according to the size of the brake at the place of installation.
- The magnetic coils are designed for a relative duty cycle of 100%, if no other values are stated.
- The braking torque is dependent on the present run-in condition of the brake.
- The brakes are only designed for dry running. The torque is lost if the friction surfaces come into contact with oil, grease, water or similar substances or foreign bodies.
- Manufacturer-side corrosion protection of the metallic surfaces.
- The rotors may rust up and block in corrosive ambient conditions and/or after long periods of storage.

Ambient Temperature: –18 °C up to +40 °C

Protection

IP54: When installed, dust-proof and protected against contact as well as against water spray from any direction (dependent on customer-side mounting method).

IP66 (Type 891...4.1): Dust-proof and protected against contact as well as against strong jet water from a nozzle coming from any direction.

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Intended Use

mayr®-brakes have been developed, manufactured and tested in compliance with the VDE 0580 standard and in accordance with the EU Low Voltage Directive as electromagnetic components. During installation, operation and maintenance of the product, the standard requirements must be observed. mayr®-brakes are for use in machines and systems and must only be used in the situations for which they are ordered and confirmed. Using them for any other purpose is not allowed.

Guidelines for Electromagnetic Compatibility (EMC)

In accordance with the EMC directives 2014/30/EU, the individual components produce no emissions. However, functional components e.g. mains-side energisation of the brakes with rectifiers, phase demodulators, ROBA®-switch devices or similar components can produce disturbance which lies above the allowed limit values.

For this reason it is important to read the Installation and Operational Instructions very carefully and to keep to the EMC directives.

Standards, Directives and Regulations Used

VDE 0580

Electromagnetic devices and components, general specifications

2014/35/EU

Low Voltage Directive

CSA C22.2 No. 14-2010

Industrial Control Equipment

UL 508 (Edition 17)

Industrial Control Equipment

EN ISO 12100

Safety of machinery - General principles for design - Risk assessment and risk reduction

EN 61000-6-4

Interference emission

EN 61000-6-2

Interference immunity

EN 60204-1

Electrical equipment of machines

Liability

- The information, guidelines and technical data in these documents were up to date at the time of printing. Demands on previously delivered brakes are not valid.
- Separate document and operational malfunctions will not be taken if: the Installation and Operational Instructions are ignored or neglected, the brakes are handled or operated incorrectly.

Guarantee

- The guarantee conditions correspond with the Chr. Mayr GmbH + Co. KG sales and delivery conditions.
- Mistakes or deficiencies are to be reported to mayr® at once!
Product Summary

Torque Limiters/Overload Clutches
- EAS™-Compact™/EAS™-NC/EAS™-smartic™
 Positive locking and completely backlash-free torque limiting clutches
- EAS™-reverse
 Reversing re-engaging torque limiting clutch
- EAS™-element clutch/EAS™-elements
 Load-disconnecting protection against high torques
- EAS™-axial
 Exact limitation of tensile and compressive forces
- EAS™-Sp/EAS™-Sm/EAS™-Zr
 Load-disconnecting torque limiting clutches with switching function
- ROBA™-slip hubs
 Load-holding, frictionally locked torque limiting clutches
- ROBA™-contitorque
 Magnetic continuous slip clutches
- EAS™-HSC/EAS™-HSE
 High-speed safety clutches for high-speed applications

Shaft Couplings
- smartflex™/primeflex™
 Perfect precision couplings for servo and stepping motors
- ROBA™-ES
 Backlash-free and damping for vibration-sensitive drives
- ROBA™-DS/ROBA™-D
 Backlash-free, torsionally rigid all-steel couplings
- ROBA™-DSM
 Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches
- ROBA-stop™ standard
 Multifunctional all-round safety brakes
- ROBA-stop™-M motor brakes
 Robust, cost-effective motor brakes
- ROBA-stop™-S
 Water-proof, robust monoblock brakes
- ROBA™-duplostop™/ROBA™-twinstop™/ROBA-stop™-silenzio™
 Doubly safe elevator brakes
- ROBA™-diskstop™
 Compact, very quiet disk brakes
- ROBA™-topstop™
 Brake systems for gravity loaded axes
- ROBA™-linearstop
 Backlash-free brake systems for linear motor axes
- ROBA™-guidestop
 Backlash-free holding brake for profiled rail guides
- ROBATIC™/ROBA™-quick/ROBA™-takt
 Electromagnetic clutches and brakes, clutch brake units

DC Drives
- tendo™-PM
 Permanent magnet-excited DC motors
Service Germany/Austria

Baden-Württemberg
Esslinger Straße 7
70771 Leinfelden-Echterdingen
Tel.: 07 11/45 96 01 0
Fax: 07 11/45 96 01 10

Bavaria
Industriestraße 51
82194 Gröbenzell
Tel.: 0 81 42/50 19 80-7

Cheminot
Bornaer Straße 205
09114 Chemnitz
Tel.: 03 71/4 74 18 96
Fax: 03 71/4 74 18 95

Franconia
Unterer Markt 9
91217 Hersbruck
Tel.: 0 91 51/81 48 64
Fax: 0 91 51/81 62 45

Kamen
Herbert-Wehner-Straße 2
59174 Kamen
Tel.: 0 23 07/24 26 79
Fax: 0 23 07/24 26 74

North
Schieder Brink 8
32699 Extertal
Tel.: 0 57 54/9 20 77
Fax: 0 57 54/9 20 78

Rhine-Main
Kreuzgrundweg 3a
36100 Petersberg
Tel.: 06 61/96 21 02 15

Austria
Pummerinplatz 1, T1Z I, A27
4490 St. Florian, Österreich
Tel.: 0 72 24/2 20 81-12
Fax: 0 72 24/2 20 81-89

Branch Offices

China
Mayr Zhangjiagang
Power Transmission Co., Ltd.
Fuxin Road No.7, Yangshe Town
215637 Zhangjiagang
Tel.: 05 12/58 91-75 67
Fax: 05 12/58 91-75 66
info@mayr-ptc.cn

Great Britain
Mayr Transmissions Ltd.
Valley Road, Business Park
Keighley, BD21 4LZ
Tel.: 0 15 35/66 39 00
Fax: 0 15 35/66 32 61
sales@mayr.co.uk

France
Mayr France S.A.S.
Z.A.L. du Minopole
Rue Nungesser et Coli
62160 Bully-Les-Mines
Tel.: 03.21.72.91.91
Fax: 03.21.29.71.77
contact@mayr.fr

Italy
Mayr Italia S.r.l.
Viale Veneto, 3
35020 Saonara (PD)
Tel.: 0498/79 10 20
Fax: 0498/79 10 22
info@mayr-italia.it

Switzerland
Mayr Kupplungen AG
Tobeläckerstraße 11
8212 Neuhausen am Rheinfall
Tel.: 0 52/6 74 08 70
Fax: 0 52/6 74 08 75
info@mayr.ch

USA
Mayr Corporation
10 Industrial Avenue
Mahwah
NJ 07430
Tel.: 0 201/4 55 72-10
Fax: 0 201/4 55 80-19
info@mayrcorp.com

Turkey
Representative Office Türkei
Kucukbakkalkoy Mah.
Brandum Residence R2
Blok D:254
34750 Atasehir - Istanbul, Türkî
Tel.: 0 216/2 32 20 44
Fax: 0 216/5 41 21 72
info@mayr.com.tr

Representatives

Australia
Drive Systems Pty Ltd.
12 Sommersby Court
Lysterfield, Victoria 3156
Australia
Tel.: 0 3/97 59 71 00
dean.hansen@drivesystems.com.au

India
National Engineering Company (NENCO)
J-225, M.I.D.C.
Bhosari Pune 411026
Tel.: 0 20/27 13 00 29
Fax: 0 20/27 13 02 29
nencol@nencol.org

Japan
MATSUI Corporation
2-4-7 Azabudai
Minato-ku
Tokyo 106-8641
Tel.: 03/35 86-41 41
Fax: 03/35 24 24 10
k.goto@matsui-corp.co.jp

Netherlands
Groneman BV
Amarisstraat 11
7554 TV Hengelo OV
Tel.: 074/2 55 11 40
Fax: 074/2 55 11 09
aandrijftechniek@groneman.nl

Poland
Wamex Sp. z o.o.
ul. Pozaryskiego, 28
04-703 Warszawa
Tel.: 0 22/6 15 90 80
Fax: 0 22/8 15 61 80
wamex@wamex.com.pl

South Korea
Mayr Korea Co. Ltd.
15, Yeondeok-ro 9beon-gil
Seongan-gu
51571 Changwon-si
Gyeongsangnam-do.
Korea
Tel.: 0 55/2 62-40 24
Fax: 0 55/2 62-40 25
info@mayrkorea.com

Taiwan
German Tech Auto Co., Ltd.
No. 28, Fenggong Zhong Road
Shengang Dist.,
Taichung City 429, Taiwan R.O.C.
Tel.: 04/25 15 05 66
Fax: 04/25 15 24 13
abbi@zfgta.com.tw

Czech Republic
BMC - TECH s.r.o.
Hviezdoslavova 29 b
62700 Brno
Tel.: 05/45 22 60 47
Fax: 04/25 22 60 48
info@bmc-tech.cz

More representatives:
Belgium, Brazil, Canada, Colombia, Croatia, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, Mexico, New Zealand, Norway, Philippines, Portugal, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.