ROBA-stop®-Z
Dual Circuit Safety Brake

- Patented low-noise operation
- Cost-effective dual circuit brake
- Unique double rotor design
- Easy installation and maintenance

EN 81

mayr®
your reliable partner
Declaration of Conformity

A conformity evaluation for the applicable EU directives has been carried out for this product. The conformity evaluation is set out in writing in a separate document and can be requested if required. It is forbidden to start use of the product until the machine or system into which it should be built is operating in accordance with all applicable EU directives.

Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. This statement is based on the ATEX directive.

Function

Brake released:
Magnetic coil is energized. Coil carrier and armature disk attract each other magnetically. Both rotors with friction linings are free.

Brake applied:
Magnetic coil is de-energized. Coil carrier and armature disk are forced apart via the thrust springs. Both rotors with friction linings are braked.

Electronic monitoring
- Temperature monitoring
- Release monitoring (option)
- Wear monitoring (option)
Use

As a holding brake for EMERGENCY STOP braking actions
(Number of braking actions according to diagram below)
- in closed buildings with clean surroundings
- in dry-running operation

Please Observe!
Special measures are necessary for use in tropical areas, sea climate with increased humidity and for longer downtimes.

Friction-Power Diagram:
(Nominal speed on sizes 60 – 500 n = 1500 rpm)
1000 – 2000 n = 750 rpm)

Fields of Application

In passenger elevators as a holding brake (see Fig. 1).
In passenger elevators as a holding brake and as protection against crashes when the elevator is moving in an upwards direction (see Figs. 2 and 3).
Electric brake function monitoring via release monitoring and temperature monitoring is required. Wear monitoring is recommended.
Brake attachment on the motor bearing shield or own mounting flange with effect on the drive sheave shaft (see Figs. 2 and 3).
Mounting position horizontal (vertical on request).

In theatre and stage drives according to BGV C1 (previously VBG 70), DIN 56925 and DIN 56921-11
Electric brake function monitoring via release monitoring and, if necessary, temperature monitoring is required.

Important Guideline!
Choosing the respective brake types according to the Type key (page 5) mainly depends on the given application and the resulting legal regulations or requirements.
Springs are adjustable according to Installation and Operational Instructions.

Technical Data and Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>b</th>
<th>b₁</th>
<th>C</th>
<th>D</th>
<th>D₂</th>
<th>d₃</th>
<th>d₄</th>
<th>F</th>
<th>F₁</th>
<th>f</th>
<th>H₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.45</td>
<td>0.25</td>
<td>30.5</td>
<td>152</td>
<td>20</td>
<td>32</td>
<td>89</td>
<td>12</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.5</td>
<td>0.25</td>
<td>32.5</td>
<td>180</td>
<td>25</td>
<td>45</td>
<td>106</td>
<td>16</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.6</td>
<td>0.25</td>
<td>37.5</td>
<td>214</td>
<td>25</td>
<td>47</td>
<td>124</td>
<td>16</td>
<td>48.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.7</td>
<td>0.3</td>
<td>45.5</td>
<td>258</td>
<td>42</td>
<td>55</td>
<td>157</td>
<td>24</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.8</td>
<td>0.3</td>
<td>63.5</td>
<td>316</td>
<td>51</td>
<td>75</td>
<td>185</td>
<td>24</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.1</td>
<td>0.4</td>
<td>77.5</td>
<td>400</td>
<td>70</td>
<td>95</td>
<td>226</td>
<td>24</td>
<td>90.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>K</th>
<th>K₁</th>
<th>L</th>
<th>L₁</th>
<th>L²</th>
<th>L₃</th>
<th>M</th>
<th>R</th>
<th>r</th>
<th>s</th>
<th>s₁</th>
<th>U</th>
<th>Z</th>
<th>Z₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>8</td>
<td>8,2</td>
<td>76</td>
<td>80</td>
<td>132</td>
<td>132</td>
<td>107</td>
<td>75</td>
<td>M</td>
<td>M</td>
<td>168</td>
<td>3 x 120°</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>10</td>
<td>11,5</td>
<td>83</td>
<td>99</td>
<td>160</td>
<td>160</td>
<td>130</td>
<td>94</td>
<td>M</td>
<td>M</td>
<td>206</td>
<td>3 x 120°</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>12</td>
<td>15</td>
<td>99</td>
<td>118</td>
<td>190</td>
<td>190</td>
<td>154</td>
<td>106</td>
<td>M</td>
<td>M</td>
<td>240</td>
<td>3 x 120°</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>15</td>
<td>18</td>
<td>133</td>
<td>153</td>
<td>230</td>
<td>230</td>
<td>190</td>
<td>125</td>
<td>M</td>
<td>M</td>
<td>307</td>
<td>3 x 120°</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
<td>21</td>
<td>171</td>
<td>195</td>
<td>280</td>
<td>280</td>
<td>232</td>
<td>150</td>
<td>M</td>
<td>M</td>
<td>364</td>
<td>3 x 120°</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>34</td>
<td>216</td>
<td>230</td>
<td>330</td>
<td>330</td>
<td>253</td>
<td>162</td>
<td>M</td>
<td>M</td>
<td>449</td>
<td>3 x 120°</td>
<td>-45</td>
<td></td>
</tr>
</tbody>
</table>

1) Smaller sizes on demand
2) Braking torque tolerance = + 40 % / - 20 %
3) Braking torque reduction possible by 50 %
4) Over ø 42 keyway according to DIN 6885/3
5) Over ø 40 keyway according to DIN 6885/3
6) Over ø 52 keyway according to DIN 6885/3
7) Over ø 90 keyway according to DIN 6885/3
8) 24 V not possible on size 2000

Standard voltage 24%; 104; 180; 207 V. Permitted voltage tolerance according to DIN IEC 60038; + / - 10 %

We reserve the right to make dimensional and constructional alterations.
Technical Explanations (Selection)

1. Determine the required braking torque (M_1) of the system
2. Determine the safety factor (S_A) of the system
3. Determine the braking torque (M_3) of the brake
 \[M_3 = 2 \times M_1 \times S_A \times T_{Br} \] [Nm]
4. Retardation time on EMERGENCY STOP
 \[t_1 = \frac{l_0 \times n}{9.55 \times M_3} \] [sec]
5. Inspection of the thermic load:
 \[Q_r = \frac{l_0 \times n^2}{182.4} \times M_3 \] [J/braking]

 Key:
 - M_1 [Nm] = Braking torque brake
 - M_3 [Nm] = Required torque system (calculation to be made by user)
 - M_4 [Nm] = Retardation torque
 - S_A [-] = Safety factor system (to be determined by user)
 - n [rpm] = Speed (brake)
 - T_{Br} [-] = Tolerance factor brake 1,2

Please observe wear values:
Due to operational parameters such as e.g. sliding speed, pressing or temperature, wear values can only be approximate values.

Switching Times (also see Table 1)

![Switching Time Diagram]

mayr® electronic components:
- Half-wave rectifier Type 024.000.6
- Bridge rectifier Type 025.000.6
- ROBA switch Type 017. _ _0.2
- ROBA multiswitch Type 019.100.2
- Spark quenching unit Type 070.000.0

Table 1 (Average value for nominal air gap and nominal torque)

- Calculation basis $n = 1500$ rpm

<table>
<thead>
<tr>
<th>Z-brake Size</th>
<th>$Q_{r\text{max}}$ (J)</th>
<th>$t_{1\text{-}}$ [ms]</th>
<th>$t_{1\text{~}}$ [ms]</th>
<th>$t_{2\text{-}}$ [ms]</th>
<th>$t_{2\text{~}}$ [ms]</th>
<th>$t_{3\text{-}}$ [ms]</th>
<th>$t_{3\text{~}}$ [ms]</th>
<th>$t_{4\text{-}}$ [ms]</th>
<th>$t_{4\text{~}}$ [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>20000</td>
<td>17</td>
<td>70</td>
<td>140</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>30000*</td>
<td>35</td>
<td>85</td>
<td>350</td>
<td>680</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>50000*</td>
<td>40</td>
<td>110</td>
<td>390</td>
<td>800</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>80000*</td>
<td>85</td>
<td>240</td>
<td>770</td>
<td>1450</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>100000</td>
<td>110</td>
<td>260</td>
<td>1000</td>
<td>1700</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>120000</td>
<td>–</td>
<td>340</td>
<td>–</td>
<td>1450</td>
<td>1100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (Average value for nominal air gap and nominal torque)

- * Calculation basis $n = 1500$ rpm

Order Number *

| __ | / | 8 | 9 | 2 | 1 | 0 | __ | . | 0 | / | __ | / | __ | / | __ |

Sizes

- 60 to 2000
 - Without accessories 0
 - Release monitoring 1
 - Release and wear monitoring ** 2
 - Flange plate 3
 - Flange plate and release monitoring 4
 - Flange plate/release and wear monitoring 5
 - Wear monitoring 6
 - Flange plate and wear monitoring 7

Example: 250 / 892.100.0 / 104 / 30 / 6885/1

* see also Guideline on page 3

** Contact material silver, min. switch capacity 0,12 VA (>12 V, >10 mA)
Electrical Basic Principles – General

Electrical Connection
DC current is necessary for the operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (± 10 % tolerance). Operation is possible both via alternating voltage in connection with a rectifier or with another suitable DC supply. Dependent on the brake equipment, the connection possibilities can vary. Please follow the exact connections according to the Wiring Diagram. The manufacturer and the user must observe the applicable directives and standards (e.g. DIN EN 60204-1 and DIN VDE 0580). Their observance must be guaranteed and double-checked!

Earthing Connection
The brake is designed for Protection Class I. This protection covers not only the basic insulation but also the connection of all conductive parts to the PE conductor on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardized inspection of the PE conductor connections to all contactable metal parts!

Device Fuses
To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Switching Behaviour
The operational behaviour of a brake is to a large extent dependent on the switching mode used. Furthermore, the switching times are influenced by the temperature and the air gap between the armature disk and the coil carrier (dependent on the wear condition of the linings).

Magnetic Field Build-up
When the voltage is switched on, a magnetic field is built up in the brake coil, which attracts the armature disk to the coil carrier and releases the brake.

Field Build-up with Normal Excitation
If we energize the magnetic coil with nominal voltage, the coil voltage does not immediately reach its nominal value. The coil inductivity causes the current to rise slowly as an exponential function. Accordingly, the build-up of the magnetic field happens more slowly and the braking torque drop (curve 1) is also delayed.

Field Build-up with Overexcitation
A quicker drop in braking torque is achieved if the coil is temporarily placed under a higher voltage than the nominal voltage, as the current then increases more quickly. Once the brake is released, it is possible to switch to the nominal voltage (curve 2). The relationship between the overexcitation and the switching time is roughly proportional at up to four times the nominal voltage; this means that at doubled nominal voltage, the switching time for brake release is halved. The effective capacity must, however, not be larger than the nominal capacity of the coil. Both, the ROBA® (multi) switch fast acting rectifier as well as the phase demodulator work according to this principle.

Please Observe:
According to German notation, decimal points in this document are represented with a comma (e.g. 0,5 instead of 0.5). We reserve the right to make dimensional and constructional alterations.

AC-side switching
The power circuit is interrupted before the rectifier. The magnetic field slowly reduces. This delays the rise in braking torque.

When switching times are not important, please switch AC-side, as no protective measures are necessary for coil or switching contacts.

→ Low-noise switching; however, the brake engagement time is longer (c. 6-10 times longer than with DC-side switching). Use for non-critical brake times.

DC-side switching
The power circuit is interrupted between the rectifier and the coil as well as mains-side. The magnetic field reduces very rapidly, resulting in a rapid rise in braking torque.

When switching DC-side, high voltage peaks are produced in the coil, which lead to wear on the contacts from sparks and to destruction of the insulation.

→ Short brake engagement time (e.g. for EMERGENCY STOP); however, louder switching noises

Protective Circuit
When using DC-side switching, the coil must be protected by a suitable protective circuit according to VDE 0580, which is integrated in mayr® rectifiers. To protect the switching contact from consumption when using DC-side switching, additional protective measures are necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operation current are sufficient. Depending on the application, the switching contact can also be protected by other protective circuits (e.g. mayr® spark quenching unit), although this may of course then alter the switching times.
Technical Explanations

Installation Conditions

- The eccentricity of the shaft end in relation to the mounting pitch circle must not exceed 0.2 mm.
- The position tolerance of the threaded holes for the double end studs (3) must not exceed 0.2 mm.
- The axial run-out deviation of the screw-on surface to the shaft must not exceed the permitted axial run-out tolerance according to DIN 42955 R of 0.05 mm, on sizes 60 – 500
 0.063 mm, on sizes 1000 – 2000

The related diameter is the pitch circle diameter to the brake attachment. Larger deviations can lead to a drop in torque, to continuous slipping on the rotor and to overheating.

- The tolerances of the hub and the shaft are to be chosen so that the hub toothing is not widened; toothing widening leads to the rotor clamping on the hub and therefore to brake malfunctions (recommended hub – shaft tolerance H7/k6).
- Dimension “A” (Fig. 12) must be kept to.
- Rotors and brake surfaces must be oil and grease-free. A suitable counter friction surface (steel or cast iron) must be used. Sharp-edged interruptions on the friction surface are to be avoided.

Recommended surface quality in the friction surface area: Ra = 1.6 μm. In particular customer-side mounting surfaces made of grey cast iron are to be additionally rubbed down with fine sandpaper (grain – 400).

Short Description Installation (Figs. 10 – 12)

For a detailed installation description, please see the Installation and Operational Instructions corresponding to the respective product.

1. Mount the gear hub assembly (1) onto the shaft according to Fig. 12, please observe dimension “A” according to Fig. 1; please observe the entire carrying length of the key, and secure axially (e.g. using a locking ring).
2. If necessary, mount the flange plate (12) using the cap screws (12.1) (please observe the tightening torque).
3. Using light pressures, push rotor 1 (5) by hand over the O-rings (1.1 and 1.2) onto the gear hub (1) (Rotor collar faces away from machine wall or flange plate). Please make sure that the toothing runs smoothly. Do not damage the O-rings.
4. Manually screw in the double end studs (3) with coating thread-side until reaching the coating (screw-in limitation) in the threaded holes of the brake screw-on surface (machine wall) or on the flange plate, screw in by hand up to its limit (secure with LOCTITE 243).
5. Push brake body (2) over double end studs (3).
6. Manually push rotor 2 (6) onto the gear hub (1) (over O-ring (1.2)) (Rotor collar faces away from machine wall or flange plate). Please make sure that the toothing runs smoothly. Do not damage the O-rings.
7. Push brake plate (16) over double end studs (3).
8. Screw on brake evenly all around using the hexagon head nut (4). (Tighten hexagon nuts with a torque wrench). Observe tightening torque.
9. Check total air gap “a”, Nominal air gap must be given.
10. Check single circuit air gap “b” on rotors 1 and 2. The corresponding air gap must be given.

Parts List

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gear hub assembly</td>
</tr>
<tr>
<td>1.1</td>
<td>O-ring 1</td>
</tr>
<tr>
<td>1.2</td>
<td>O-ring 2</td>
</tr>
<tr>
<td>2</td>
<td>Brake body assembly</td>
</tr>
<tr>
<td>3</td>
<td>Double end stud</td>
</tr>
<tr>
<td>4</td>
<td>Hexagon nut</td>
</tr>
<tr>
<td>5</td>
<td>Rotor 1</td>
</tr>
<tr>
<td>6</td>
<td>Rotor 2</td>
</tr>
<tr>
<td>10</td>
<td>Reference gauge (2x)</td>
</tr>
<tr>
<td>12</td>
<td>Flange plate (option dependent on Type) or machine wall (customer-side)</td>
</tr>
<tr>
<td>12.1</td>
<td>Cap screw</td>
</tr>
<tr>
<td>16</td>
<td>Brake plate</td>
</tr>
<tr>
<td>18</td>
<td>Hand release assembly</td>
</tr>
</tbody>
</table>

Technical Explanations

ROBA-stop®-Z
Headquarter

Chr. Mayr GmbH + Co. KG
Eichenstrasse 1, D-87665 Mauerstetten
Tel.: 0 83 41/8 04-241, Fax: 0 83 41/80 44 22
www.mayr.de, eMail: info@mayr.de

Representatives

<table>
<thead>
<tr>
<th>Country</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>Benelux States</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
</tr>
</tbody>
</table>

You can find the complete address for the representative responsible for your area under www.mayr.de in the internet.

Service Germany

<table>
<thead>
<tr>
<th>Region</th>
<th>Representative Details</th>
</tr>
</thead>
</table>
| Baden-Württemberg | Jochen Maurer
Mittlere Holdergasse 5
71672 Marbach
Tel.: 0 71 44/1 80 34-35
Fax: 0 71 44/1 53 20 |
| Bavaria | Manfred Schwarz
Eichenstrasse 1
87665 Mauerstetten
Tel.: 0 83 41/80 41 04
Fax: 0 83 41/80 44 23 |
| Franken | Jochen Held
Unter Markt 9
91217 Hersbruck
Tel.: 0 91 51/81 48 64
Fax: 0 91 51/81 62 45 |
| Hagen | Detlef Bracht
Im Langenstück 6
58093 Hagen
Tel.: 0 23 31/78 03 0
Fax: 0 23 31/78 03 25 |
| Kamen | Thomas Kant
Lünerstrasse 211
59174 Kamen
Tel.: 0 23 07/23 63 85
Fax: 0 23 07/24 26 74 |
| North | Bernd Massmann
Schiefer Brink 8
32699 Extental
Tel.: 0 57 54/9 20 77
Fax: 0 57 54/9 20 78 |
| Rhine-Main | Wolfgang Rattay
Jägerstrasse 4
64739 Höchst
Tel.: 0 61 63/48 88
Fax: 0 61 63/46 47 |

Branch Office

<table>
<thead>
<tr>
<th>Region</th>
<th>Branch Details</th>
</tr>
</thead>
</table>
| China | Mayr Zhanjiagang
Power Transmission Co., Ltd.
Changxing Road No. 16,
215600 Zhanjiagang
Tel.: 0 512/85 75 66
Fax: 0 512/85 75 66
info@mayr.cn |
| Great Britain | Mayr Transmissions Ltd.
Valley Road, Business Park Keighley, BD21 4LZ
West Yorkshire
Tel.: 0 15 35/66 39 00
Fax: 0 15 35/66 32 61
sales@mayr.co.uk |
| France | Mayr France S.A.
Z.A.L. du Minopole
BP 16
62160 Bully-Les-Mines
Tel.: 0 31.21.72.91.91
Fax: 0 31.21.79.71.77
contact@mayr.fr |
| Italy | Mayr Italia S.r.l.
Viale Veneto, 3
35020 Saonara (PD)
Tel.: 0 49/8 79 10 20
Fax: 0 49/8 79 10 22
info@mayr-italia.it |
| Singapore | Mayr Kupplungen AG
Tobeläckerstrasse 11
8212 Neuhausen am Rheinfall
Tel.: 0 52/6 74 08 75
Fax: 0 52/6 74 08 75
info@mayr.ch |
| USA | Mayr Corporation
4 North Street
Waldwick
NJ 07463
Tel.: 0 21/45 72 10
Fax: 0 21/45 80 19
info@mayrcom.com |

Representatives

<table>
<thead>
<tr>
<th>Country</th>
<th>Contact Details</th>
</tr>
</thead>
</table>
| Australia | Transmission Australia Pty. Ltd.
22 Corporate Ave,
3178 Rowville, Victoria
Australien
Tel.: 0 39/7 55 44 44
Fax: 0 39/7 55 44 11
info@transaus.com.au |
| South Africa | Torque Transfer
Private Bag 9
Elandsfontein 1406
Tel.: 0 11/3 45 80 00
Fax: 0 11/9 74 05 24
torque@bearings.co.za |
| China | Mayr Shanghai
Representative Office
Room 506, No. 1007,
Zhongshan South No. 2 Road
200030 Shanghai, VR China
Tel.: 0 21/64 57 39 52
Fax: 0 21/64 57 56 21
sales@mayr.com.cn |
| India | National Engineering Company (NENCO)
J-225, M.I.D.C.
Bhosari Pune 411026
Tel.: 0 20/27 45 25 99
Fax: 0 20/27 47 02 29
nenco@vsnl.com |
| Japan | Sumitomo Heavy Industries
PTC Sales Co., Ltd. (SJS)
Think Park Tower 2-1-1 Ohsaki Shinagawa-ku
Tokyo 141-6025
Tel.: 03/67 37 25 21
Fax: 03/68 66 51 71
Gotou.k@sumiju.co.jp |
| Machine tools | Applications in China
DTC. Co.Ltd.,
Block 5th, No. 1699,
East Zhulu Road,
201700 Shanghai, China
Tel.: 021/59883978
Fax: 021/59883979
dtcshanghai@online.sh.cn |

More representatives:
Austria, Benelux States, Brazil, Canada, Czech Republic, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Malaysia, New Zealand, Norway, Philippines, Poland, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Thailand, Turkey
You can find the complete address for the representative responsible for your area under www.mayr.de in the internet.